
Towards Stochastic Rounding for
Scientific Applications

Master Thesis

Thomas Creavin

August 16, 2025

Advisors: Prof. Dr. T. Hoefler, Dr. A. Calotoiu

Department of Computer Science, ETH Zürich

Acknowledgments

I would like to profoundly thank my supervisor, Lex. Thank you for pro-
viding such deeply pragmatic advice, for taking meetings at all hours, and
offering suggestions that significantly improved the quality of my thesis.

I want to thank my professor, Torsten. Thank you for your insightful ques-
tions and reviews. It’s very clear to me why you’re the professor!

I’m grateful to the whole Scalable Parallel Computing Lab whose work I
build upon. I’m most grateful to Yakup who kindly assisted me with my
ICON experiments.

I would be remiss not to acknowledge the role Oisı́n played in bringing about
this thesis. Oisı́n so thoughtfully took it upon himself to reach out to John,
and John in turn got in touch with Peter, who ultimately and generously
gave me the idea to explore this topic. Thank you Peter, thank you John, and
thank you so, so much Oisı́n.

On a more personal note, throughout the thesis, I was sustained by the
companionship of my wonderful friends. In particular, I truly cherish the
copious – verging on exorbitant – number of hours spent frivolously chatting
with Timur, Steffen, and Filip. Though in some ways, it’s an integral part
of the process! In addition, I’m fortunate to have the support of my caring
housemates, Jürg and Bettina.

Last but not least, this whole journey is made easier by the backing of my
loving family: my dad Michael, my mom Nellie, my two brothers Adam and
Paul, et al.

Thank you all!

i

“Everything old is new again.”

— Proverb

ii

Abstract

Modern hardware’s increasing reliance on lower-precision floating-point
arithmetic challenges traditional double-precision climate simulations.
To address this, we integrated Stochastic Rounding (SR) into the DaCe
framework, analyzed the performance properties of random number
generators (RNGs) to maximize performance without compromising
on accuracy. Our implementation enables automated transformation
of existing applications to use SR with minimal developer effort. We
successfully replicated existing literature results and expanded our anal-
ysis to various kernels and the ICON weather and climate model. We
demonstrated that SR provides substantial benefits, up to three orders
of magnitude error reduction, for computations involving long accumu-
lation chains and simulations prone to stagnation in fixed points. We
found that it offered marginal benefits to ICON and other kernels. This
highlights the need for further advancements to make SR consistently
successful in real-world applications, an exploration made significantly
easier by our developed framework.

iii

Contents

Contents iv

1 Introduction 1

2 Background 4
2.1 A Note on Floating-Point Formats 4
2.2 Rounding Modes and Round-off Error 5
2.3 Stochastic Rounding . 6

3 State of the Art 8
3.1 Transitioning to Single-Precision 8
3.2 Scientific Applications of Stochastic Rounding 9

4 Testing Stochastic Rounding: Go Broad & Fail Fast 14
4.1 Stochastic Rounding in DaCe 15

4.1.1 Implementation Validation 19
4.2 Easier Evaluation of Schemes: SR in NPBench 21

4.2.1 Performance . 21
4.2.2 Rounding Error . 23

5 Results 28
5.1 Dot Product . 28
5.2 Case Study: Stochastic Rounding in ICON 33

6 Conclusion 36

Bibliography 39

iv

Chapter 1

Introduction

The needs of AI applications are increasingly driving the development
and production of new hardware [6]. For decades, scientific applications
have dominated the high-performance computing space, with many requir-
ing or relying on double-precision computations. Deep neural networks
(DNNs) [14], in contrast, do not need such high-precision tools to achieve
their goals [7]. In fact, there are many approaches that show AI models can
be trained more efficiently and used more cheaply by reducing the precision
of the floating-point operations used [11], with new, efficient floating-point
number representations being developed specifically for this purpose such
as BFloat16.

New accelerators, like NVIDIA’s GB200 and GH200 superchips, focus on
improving the throughput of lower precision floating-point computation. The
GH200 offers twice as much float32 (FP32) computation and at least 7 times
more float32 tensor core compute when compared to float64 (FP64). This shift
towards lower-precision, high-throughput computation is mirrored in the
architecture of modern supercomputers, where the proportion of GPU-based
compute resources has grown significantly in recent years. Four of the top ten
supercomputers use GPUs, with Alps (2024) and Eagle (2025) are boasting
the new NVIDIA GH200 superchips.

While traditionally, scientific computing did rely on double-precision floating-
point computations, there are great incentives to move to single-precision:
half the memory requirements, double the throughput, and relief for memory-
bandwidth-bound applications. These benefits increase further if applications
are able to move to half-precision or lower. However, retaining the same accu-
racy and being able to provide the same quality of scientific results remains
an unsolved challenge. There are many different techniques to boost the
accuracy of lower-precision computations, from emulating higher-precision
floating-point operations with lower-precision numbers or integers [22], to
stochastic rounding [5], which uses the rounding process itself to try and

1

Specification GB200 GH200

FP64 80 TFLOPS 34 TFLOPS
FP64 Tensor Core 80 TFLOPS 67 TFLOPS
FP32 160 TFLOPS 67 TFLOPS
TF32 Tensor Core 2.5 PFLOPS 494 TFLOPS
FP16/BF16 Tensor Core 5 PFLOPS 990 TFLOPS
FP8 Tensor Core 10 PFLOPS 990 TFLOPS
INT8 Tensor Core 10 POPS 1,979 TOPS
FP4 Tensor Core 20 PFLOPS –

Table 1.1: NVIDIA GB200 and GH200 specifications showing the increased performance of
low-precision floats and in particular that of the low precision tensor cores.

eliminate some of the numerical errors introduced.

Early exploration into stochastic rounding [7] [21] has shown it to be a
promising avenue, with multiple companies even adding hardware support
for it in specialized chips (e.g., Graphcore’s IPU).

In this work, we propose to expand this exploration by considering both
more and varied micro-benchmarks as well as testing its applicability on
components from the ICOsahedral Non-hydrostatic weather and climate
modeling framework (ICON) [10]. Towards this goal, we introduce an
automated approach that allows entire benchmarks and applications to be
transformed in order to support stochastic rounding rather than the more
common round-to-nearest solution, as manual rewriting of real applications
is prohibitively expensive, especially if the benefit is unproven. Furthermore,
we extend the popular NumPy benchmarking suite NPBench [25] with
the ability to compare the error of floating-point functions ran in different
precisions.

Our experiments reveal both the promise and the cost of stochastic rounding
(SR) on existing hardware. On micro-benchmarks, applying SR increases
computation time by a factor of 8.1×, with roughly 50% of the overhead
dominated by random number generation. Interestingly, SR performs nearly
identically whether using low- or high-quality RNGs, suggesting that runtime
can be reduced by choosing a lower-quality generator without sacrificing
accuracy. In terms of error reduction, SR generally provides modest im-
provements for typical computations, but its effect becomes pronounced
in workloads with long accumulation chains. We find that for large dot
products, SR can reduce error by up to three orders of magnitude. The

2

accumulation error is highly data dependent: vectors or arrays whose val-
ues predominantly accumulate in one direction exhibit faster error growth,
whereas symmetric or zero-centered distributions are less sensitive. These
observations emphasize that SR is most effective when carefully applied to
workloads prone to numerical error accumulation.

Our contributions can be summarized as follows:

• An in-depth evaluation of stochastic rounding on a wide range of
kernels as well as on components of the ICON climate model.

• A method to change both the rounding scheme and the representation
of floating-point data used by an application with minimal developer
effort.

• An extension of the NPBench benchmark suite [25] with the ability to
compare the errors of different floating-point computation solutions.

3

Chapter 2

Background

2.1 A Note on Floating-Point Formats

Before we proceed, we describe the floating-point number representation in
a bit more detail, especially what is meant by double and single precision. All
data is stored and processed in binary form at the hardware level. This can be
applied to integers in a straightforward way: the representation contains one
bit for each power of two, and the number’s value is obtained by summing
the products of each bit’s value with the corresponding power of two:

1310 = 8 + 4 + 1 = 23 + 22 + 20 = 11012.

An additional bit can be used in some formats to represent whether a number
is positive or negative. Representing decimal values is more involved. One
scheme for example represents the integer part as the sum of positive powers
of 2 and the fractional part as the sum of negative powers of 2:

3.12510 = 2 + 1 +
1
8
= 21 + 20 + 2−3 = 11.0012.

Most scinetific computations are performed using a binary floating-point
scheme, as it allows representation of a much wider range of values com-
pared to fixed-point representations. In a floating-point scheme, values are
represented using a significand scaled by a power of two:

3.12510 = 1.562510 × 21 = 1.10012 × 21.

The IEEE 754 standard defines several possible floating-point number repre-
sentations using different number of bits:

4

2.2. Rounding Modes and Round-off Error

Precision Format Sign bit Significand bits Exponent bits
Double Floating-point 64 1 52 11
Single Floating-point 32 1 23 8
Half Floating-point 16 1 10 5

Table 2.1: IEEE 754 Floating-Point Number Representations

Currently, many competing proposals exist for additional representations,
some more compact, some using even fewer bits, and all tailored more closely
to the needs of machine learning applications. Some popular alternatives
include BFloat16 which offers a wider range than Floating-point 16 but with
reduced precision; TensorFloat-32 which enables faster computations on
NVIDIA hardware; and block floating-point [24], which conserves memory
by grouping significands into blocks that share a common exponent. Still,
most scientific applications use double-precision.

Precision Format Sign bit Significand bits Exponent bits
BFloat16 Brain Floating-point 16 1 7 8

TF32 TensorFloat-32 1 10 8
Mini Float Mini Floating-point 8 1 4 3

BFP16 Block Floating Point 16 1 15 8 (shared)

Table 2.2: Alternative Floating-Point Number Representations

2.2 Rounding Modes and Round-off Error

Going from double-precision, which can represent ∼ 16 decimal digits1, to
single-precision, which can represent ∼ 7, it is evident we cannot represent
the same range of real numbers. For long-running calculations, some values
may need to be truncated or rounded so they can fit within the representable
range of the floating-point numbers. This introduces round-off errors, and
these errors can accumulate and have a significant impact on the results.
In such cases, how we round or truncate values plays an important role in
simulation accuracy.

We will first discuss the rounding methods offered by the Standard for Floating-
Point Arithmetic(IEEE 754), by presenting all five rounding modes:

• Round to nearest

– Round to nearest, ties to even – rounds to the nearest value; if the
number falls midway, it is rounded to the nearest value with an

1Number of digits can be computed with log10(2) · (significand length + 1)

5

2.3. Stochastic Rounding

even least significant digit. This is the default for binary floating-
point and the recommended default for decimal.

– Round to nearest, ties away from zero – rounds to the nearest value; if
the number falls midway, it is rounded to the nearest value above
(for positive numbers) or below (for negative numbers).

• Directed roundings

– Round toward 0 – directed rounding towards zero (also known as
truncation).

– Round toward +∞ – directed rounding towards positive infinity
(also known as rounding up or ceiling).

– Round toward −∞ – directed rounding towards negative infinity
(also known as rounding down or floor).

The main drawback of these modes is the introduction of a small bias. Even
with round to nearest, if a value is incremented by less than half floating-point
spacing, it will be rounded down. This means that a potentially important
piece of information is lost.

2.3 Stochastic Rounding

To address this, SR was proposed as early as the 1950s by [2]. Unlike the
previous modes, it behaves probabilistically:

SR(x) =

{
⌈x⌉, with probability p(x),
⌊x⌋, with probability 1− p(x).

(2.1)

Where ⌊x⌋ represents the largest representable floating-point value number
less than or equal to x; ⌈x⌉ the smallest greater than or equal to x; and p(x)
is given by,

p(x) = 1− ⌈x⌉ − x
⌈x⌉ − ⌊x⌋ (2.2)

Or put simply, SR rounds a value to the next larger or smaller floating-
point representation with probability 1 minus the relative distances to those
representations.

Stochastic rounding offers notable advantages over round to nearest. [4] show
that:

1. Rounding errors are mean-independent random variables with zero
mean.

6

2.3. Stochastic Rounding

2. For the dot product, stochastic rounding yields the expected result
and avoids stagnation. In particular, the dot product of two uniform
[0, 1] vectors of n elements stagnates under round-to-nearest rounding
for n ≳ 106. While with stochastic rounding, the computation pro-
gresses with an error bounded by

√
n · u, where u (unit roundoff) is the

maximum relative error introduced by rounding2

However, to use the SR rounding mode, it must be emulated in software.
Although major chipmakers like NVIDIA [1] and AMD [15] have patented
SR technology, SR is not available in hardware except for a limited selection
of specialized chips such as Intel Loihi, SpiNNaker2 [17], and GraphCore’s
IPU.

Despite the lack of hardware support, SR has recently garnered renewed
interest, particularly in contexts where low-precision formats are already
in use. This renewed attention was sparked by [7], which demonstrated
that, for neural network training, a 16-bit fixed-point representation with
stochastic rounding can be as effective as 32-bit floating-point numbers with
round-to-nearest.

2Unit round-off is defined as 2−(p+1) for a p-bit significand. For double, single, and
half-precision, it corresponds to 1.1× 10−16, 6× 10−8, and 4.9× 10−4, respectively.

7

Chapter 3

State of the Art

3.1 Transitioning to Single-Precision

The European Centre for Medium-Range Weather Forecasts (ECMWF) offers
a motivating example of successfully transitioning from high to lower preci-
sion while preserving the numerical accuracy of a real scientific application.
Over four years, developers and scientists at ECMWF went from publishing
an initial investigation into transitioning specific kernels to lower precision
floating-point computation [23] to performing forecasts using the Integrated
Forecasting System (IFS) in single-precision by default [9].

In the case of the IFS codebase, switching between single- and double-
precision arithmetic (mostly) requires a simple update to the FORTRAN KIND

parameter. This pattern can be found in the codebases of other weather
and climate frameworks like ICON [10]. However, in these large codebases,
changing the kind parameter is often only the first step of the process.
Typically significantly more changes are required to move to lower precision
successfully, summarized below in order of their complexity:

1. Some of these changes are simple, but tedious: they involve going
through the code and ensuring that all data uses the kind parameter and
there are no instances of variables with fixed precision, and replacing
hard-coded thresholds and security constants with parameters defined
using intrinsic functions of precision, e.g., replace code such as x =

10.E+100 with the intrinsic FORTRAN function x = huge(x).

2. Other changes require more extensive modifications, such as adapting
the interfaces to linear algebra and Message Passing Interface (MPI)
libraries, and ensuring the I/O routines still function correctly – input
files storing data in binary form must be processed differently. Even
some system functions can be dependent on the floating-point precision
used.

8

3.2. Scientific Applications of Stochastic Rounding

3. Finally, the algorithms and model configuration need to be adapted
to retain the accuracy needed for expressive weather forecasting: the
time-stepping of the radiation scheme was adapted, Legendre transfor-
mations were left in double-precision because they are highly sensitive
to round-off errors due to their recurrence relations and the vertical
finite element scheme requires precomputing some integral operators
in double-precision before finally truncating them to single-precision.

After all these challenges were overcome, the ECMWF team reduced the
IFS model runtime by approximately 40% [9]. The example above demon-
strates that while it is possible to transition even a full scientific application
from double-precision to (mostly) single-precision computation, it is a very
complex process requiring an in-depth understanding of both the software
implementation and the physical processes being modeled. To reduce the
effort required for transitioning to lower precision, various approaches aim
to mitigate accuracy loss—ranging from modifying numerical rounding
methods [21], to automatically reordering equations [20], to training neural
networks for error correction [8].

3.2 Scientific Applications of Stochastic Rounding

Stochastic Rounding can be beneficial for training deep neural networks [7],
but there is no guarantee it will generalize to scientific applications. Training
machine learning applications is an inherently statistical process, and many
architectures benefit from adding perturbations to their models [19].

In the following, we will introduce some existing applications of stochastic
rounding for scientific problems found in literature, and reproduce their
results using our approach. One such experiment from [17] demonstrates
how applying SR can alleviate stagnation when computing the harmonic
series (∑∞

n=1
1
n = 1+ 1

2 +
1
3 +

1
4 + · · ·) in low-precision. As shown in Table 3.1,

low-precision fixed- and floating-point RTN formats stagnate early, with
FP16 and BFloat16 incurring significant errors. Applying stochastic rounding
to the 32-bit formats yields results comparable to double-precision while
the 16-bit formats also see substantial improvement: BFloat16 approaches
single-precision accuracy, and FP16, though less accurate, shows a marked
improvement over its RTN counterpart. Notably, SR provides tighter bounds
for floating-point than for fixed-point representations. These results quantita-
tively show the power of SR when applied to the right problems.

While the harmonic series is a highly idealized case, it serves to illustrate
the core mechanism by which SR can reduce rounding error. To assess its
impact in a more realistic setting, we next consider the work of [21], who
investigated SR in the context of performing climate-related simulations at

9

3.2. Scientific Applications of Stochastic Rounding

Format Sum at i = 5× 106 Error at i = 5× 106

FP64 16.002 0
FP32 15.404 0.598
FP16 7.086 8.916
BFloat16* 5.063 10.94

s16.15 RTN 11.938 4.064
s16.15 RD 10.553 5.449
s8.7 RTN 6.414 9.588
s8.7 RD 5.039 10.963

s16.15 SR 16.002 (s.d. 0.012) −1.4× 10−4

FP32 SR* 16.002 (s.d. 8× 10−4) −3.5× 10−5

s8.7 SR 11.205 (s.d. 0.242) 4.797
FP16 SR* 11.638 (s.d. 0.012) 4.364
BFloat16 SR* 15.355 (s.d. 0.639) 0.647

Table 3.1: Summation of the harmonic series for different arithmetic formats from [17]. Our
contributions are denoted by *. Sums and errors are reported relative to the double-precision
result at the five-millionth iteration. The SR sums are obtained by running the experiment 50
times, each time using a different RNG seed. The formats sX.Y indicate a fixed precision type
with a sign bit, X integer bits, and Y fractional bits. “RD” denotes the round-down mode and
s.d. refers to the standard deviation.

single-precision. We attempt to both reproduce their results where the code
is made available, and understand their generality.

The first experiment we consider is a simulation of a Lorenz system [16]
across the main floating-point formats. This system exhibits features of
nonlinear dynamics representative of the real atmosphere [18]. We present
our recreation in Figure 3.1. When simulated correctly, the x and y co-
ordinates should form a characteristic figure-eight orbit. As the system is
highly chaotic, precise numerical reproduction of any specific orbit is not
meaningful; following Paxton, we plot the orbits on a pixelated grid. From
the figure, we observe that double and single-precision, in both rounding
modes, produce visually similar distributions. In contrast, half-precision
RTN suffers from the limited number of presentable values, forcing the
simulation to become trapped in an early periodic orbit. Applying SR to half-
precision introduces stochastic noise that prevents this stagnation, producing
a trajectory that more closely resembles the higher-precision results.

10

3.2. Scientific Applications of Stochastic Rounding

Figure 3.1: Our simulation of the Lorenz system at different floating-point precisions. Brighter
colors indicate higher point density. Orbits are plotted on a 200× 200 pixel grid, except for
Float16 RTN, which is plotted on a 25× 25 grid for legibility.

To quantify the differences between simulations, we compute the pixel-wise
differences and plot the root mean squared error (RMSE) in Figure 3.2.
As expected, the discrepancy for Float16 RTN is substantial. Interestingly,
Float32 with stochastic rounding (SR) also exhibits a modest improvement
over its round-to-nearest (RTN) counterpart, highlighting that SR can provide
benefits even at higher precisions that don’t suffer from stagnation.

20 10 0 10 20
x

30

15

0

15

30

y

Float64 RTN

20 10 0 10 20
30

15

0

15

30

Float32 RTN
RMSE: 5.7414

20 10 0 10 20
30

15

0

15

30

Float32 SR
RMSE: 5.5548

20 10 0 10 20
30

15

0

15

30

Float16 RTN
RMSE: 176.9032

20 10 0 10 20
30

15

0

15

30

Float16 SR
RMSE: 7.7557

0

101

103

106

109

103

106

109

101

Re
la

tiv
e

Bi
n

Di
ffe

re
nc

e

Figure 3.2: Root mean squared error (RMSE) of the pixel-wise differences between Lorenz system
simulations across different floating-point formats.

11

3.2. Scientific Applications of Stochastic Rounding

The second experiment from Paxton investigates a nonlinear shallow-water
model for turbulent flow over a ridge. They perform a twenty-year ensemble
simulation of turbulent flow in a rectangular ocean basin at various pre-
cisions, computing an average snapshot for each. The difference between
snapshots is quantified using the Wasserstein distance between their spatial
distributions [12]. Results show that double- and single-precision RTN com-
putations produce similar outcomes, whereas half-precision and BFloat16
perform notably worse. Applying stochastic rounding mitigates this degrada-
tion, reducing the errors of Float16 SR and BFloat16 SR to levels comparable
with Float32 RTN.

This demonstrates that, even in a complex climate-modeling context, SR
can effectively overcome the limitations of low-precision formats. We do
not reproduce this experiment here, as it would require rewriting the Julia
ShallowWaters.jl1 package in Python, and instead re-use their original
figure (Figure 3.3) to illustrate the visual difference between double- and
half-precision after SR is applied.

Figure 3.3: The shallow water model integrated at different precision levels by Paxton. A
snapshot of the flow speed (m s−1), initiated from the same initial condition, after 50 days.

Finally, Paxton simulate heat diffusion in a soil column warmed from the
top and insulated at the bottom. The integration is carried out over 100
years, and since the source code was not available, we re-use their original
figure (Figure 3.4). The results show that single- and half-precision RTN
stagnate due to a small tendency term repeatedly rounding down to zero,
preventing effective heat diffusion through the column. This issue can be
mitigated by applying SR: Float32 SR produces results visually similar to the

1https://github.com/milankl/ShallowWaters.jl

12

https://github.com/milankl/ShallowWaters.jl

3.2. Scientific Applications of Stochastic Rounding

double-precision simulation, while Float16 SR also improves over RTN, albeit
with some visible artifacts.

Figure 3.4: Heat diffusion in a soil column with different number formats and rounding modes
from [21].

These findings are promising indicators that SR may enable production-
level applications (e.g., ICON) to transition to lower-precision (e.g., single-
precision) arithmetic with less additional work. However, providing a conve-
nient way to explore SR while keeping the engineering effort bounded is an
unsolved challenge.

13

Chapter 4

Testing Stochastic Rounding: Go
Broad & Fail Fast

As seen from the example of IFS, moving to single-precision is no trivial feat.
Some explorations, such as Paxton’s work, suggest that it may be possible to
achieve this move more easily with stochastic rounding. Given the crucial
importance of climate modeling, we would like to explore how to add the
option of using stochastic rounding to larger codes, such as components of
ICON.

However, manually rewriting large scientific codes is a tremendous effort –
as SR must currently be emulated – and whether SR will provide a benefit is
not guaranteed.

To make it easier to quickly benchmark stochastic rounding and deploy it
to larger applications, we use DaCe [3], a data-centric parallel programming
framework. DaCe treats data movement as a first-class citizen in its interme-
diate representation, which leads to all data containers (arrays, individual
variables) being easy to manipulate and change. This allows us to leverage
the convenient overloading of operations for selected data-types and imple-
ment an emulation of floating-point computation using stochastic rounding
with different precisions as a global program-level transformation.

Central to DaCe is its Stateful Dataflow multiGraphs (SDFG) data-centric
intermediate representation: A transformable, interactive representation of
code based on data movement. Since the input code and the SDFG are
separate, it is possible to optimize a program without changing its source,
so that it stays readable. This is of interest to us because it means we can
leverage existing SDFGs of complex codes e.g., ICON to test SR on.

At the core of DaCe is its internal Stateful Dataflow multiGraph (SDFG)
representation, a transformable, interactive model of code based on data
movement. Because the SDFG is separate from the source code, programs

14

4.1. Stochastic Rounding in DaCe

can be optimized without altering their original form. This separation is
particularly useful for our purposes, as it enables us to apply SR to existing
SDFGs from complex codes, like ICON, without almost any efforts.

Furthermore, we can use NPBench [25], a benchmark suite developed to
compare the performance of different frameworks used to optimize NumPy-
based scientific applications, as a starting point to create a framework to
easily evaluate the performance and accuracy of stochastic rounding on a
wide range of kernels representative of scientific computations.

In the following, we will discuss how we implemented stochastic rounding
in DaCe, how we expanded NPBench, before discussing how we applied this
method to a critical component of the dynamical core of ICON.

4.1 Stochastic Rounding in DaCe

DaCe has its own Python-defined type system that covers the full range of
NumPy datatypes like bool, int, uint, float, complex, plus others like pointers.

Although DaCe is written in Python and accepts input programs written
in NumPy, but also other languages such as Fortran or C. DaCe generates
human-readable C++ code as output. Thus, during the compilation phase,
DaCe maps custom high-level Python definitions to concrete C++ implemen-
tations. For instance, DaCe Float64 compiles down to C’s double type; DaCe
Float32 compiles to C’s single-precision float type.

We implement stochastically rounded floats as distinct data types. We intro-
duce two new types: DaCe Float32sr and DaCe Float16sr which can be
used interchangeably with the existing round-to-nearest versions, requiring
no additional implementation effort from developers and allow easy testing
of their numerical impact. The implementation for Float32sr is given by
Listing 4.1.

The addition of such new datatypes is quite lightweight, suggesting this is a
viable path for further floating-point emulation schemes such as Ozaki [22].
Our new Python class definitions are concise – only 25 lines of code. The
C++ definitions are more intricate, as the ultimate goal is to run real world
applications on single-precision hardware accelerators like GPUs so we
develop backend code for both CPU and GPU devices. We define and
implement our own comparators, casting behavior, and our own arithmetic
and I/O operations such as≫. The Float32sr stochastic rounding function
is given by Listing 4.2.

Rather than implement Equation 2.1 directly, we use efficient bit-wise op-
erations to round with probabilities proportional to the nearest numerical
representations. The pseudocode is provided in Algorithm 1. It follows

15

4.1. Stochastic Rounding in DaCe

Listing 4.1 DaCe Type Definition

1 class Float32sr(typeclass):

2

3 def __init__(self):

4 self.type = numpy.float32

5 self.bytes = 4

6 self.dtype = self

7 self.typename = "float"

8 self.stochastically_rounded = True

9

10 def to_json(self):

11 return 'float32sr'
12

13 @staticmethod

14 def from_json(json_obj, context=None):

15 return float32sr()

16

17 @property

18 def ctype(self):

19 return "dace::float32sr"

20

21 @property

22 def ctype_unaligned(self):

23 return self.ctype

24

25 def as_ctypes(self):

26 return _FFI_CTYPES[self.type]

27

28 def as_numpy_dtype(self):

29 return numpy.dtype(self.type)

30

31 @property

32 def base_type(self):

33 return self

the SR implementation of the Julia StochasticRounding.jl1 package closely
[21], [13]. This method generates pseudo-random noise restricted to the
significand bits that will be discarded during rounding. If the discarded bits
high in value, and so close to being rounded up, then with a high probability
the addition of random noise with cause the least significant kept bit to be
incremented. If the discarded bits are low in value, then it is unlikely the
random noise will cause the least significant kept bit to be incremented. In
this way, the rounding occurs with an unbiased probability in expectation.
The surplus bits are then truncated, and the result is cast to the target lower-

1https://github.com/milankl/StochasticRounding.jl

16

https://github.com/milankl/StochasticRounding.jl

4.1. Stochastic Rounding in DaCe

Listing 4.2 Single-precision Stochastic Rounding Function

1 DACE_HOST_DEVICE static float stochastic_round(double x) {

2 uint64_t rbits = get_random_u64();

3

4 if (std::isnan(x) || std::isinf(x)) {

5 return static_cast<float>(x);

6 }

7

8 if (abs(x) > FLOATMAX_F32) {

9 return std::signbit(x) ? -INFINITY : INFINITY;

10 }

11

12 // if x is subnormal, round randomly; N.B fast-math forces

subnormal values to 0↪→
13 if (abs(x) < FLOATMIN_F32) {

14 return static_cast<float>(x + rand_subnormal(rbits));

15 }

16

17 uint64_t bits = double_to_bits(x);

18 const uint64_t mask = 0x000000001FFFFFFF; // mask last 29

surplus bits of the double prec mantissa↪→
19

20 bits += (rbits & mask); // add stochastic perturbation

21 bits &= ~mask; // truncate lower bits

22 double rounded = bits_to_double(bits);

23 return static_cast<float>(rounded);

24 }

precision format. Further care is taken to correctly handle special cases, such
as subnormal numbers, infinities, and NaNs.

Algorithm 1 Stochastic Rounding by Perturbation and Truncation
1: function StochasticRound(double)
2: rand← RNG32()
3: mask← (1≪ 29)− 1 ▷ Mask bits lost to rounding
4: rand← rand & mask
5: double← double + rand ▷ Perturb bits lost to rounding
6: double← double & ∼ mask ▷ Truncate surplus bits
7: return FloatCast(double)
8: end function

In addition to ensuring correct SR implementation, performance is a key
consideration. The Julia SR library reports that emulating SR can incur a

17

4.1. Stochastic Rounding in DaCe

5− 10× slowdown, with roughly half of the overhead coming from random
number generation (RNG). Thus, the choice of generator is critical. With
this in mind, we implement five variants to benchmark both runtime and
error-reduction properties:

• No RNG baseline - uses a constant zero for the stochastic perturbation to
measure SR overhead without RNG cost.

• Default SR - uses the Mersenne Twister, a high-quality RNG (Listing 4.3).

• Low-quality RNGs - two variants employing a Linear Congruential
Generator (Listing ??) and Xorshift (Listing 4.5).

• Buffered SR - uses a precomputed circular buffer of high-quality Mersenne
Twister values to reduce RNG overhead (Listing 4.6).

Listing 4.3 Random 64-bit unsigned integer generator using the Mersenne
Twister RNG

1 static uint64_t get_random_u64() {

2 return get_rng()();

3 }

4

5 static std::mt19937_64& get_rng() {

6 static std::mt19937_64 rng(std::random_device{}());

7 return rng;

8 }

Listing 4.4 Linear Congruential Generator 64-bit

1 DACE_HOST_DEVICE static inline uint64_t lcg64() {

2 rng_state_64 = rng_state_64 * 6364136223846793005ULL +

1442695040888963407ULL; // 64-bit LCG constants↪→
3 return rng_state_64;

4 }

In addition, we need a method to easily transform existing DaCe SDFGs to
use stochastic rounding without major engineering effort. Thankfully, DaCe
has the concept of a pass – a means of iterating over the components of
an SDFG detecting clearly described patterns, and changing the program
according to predefined rules, similar to AST transformations in classical
compilers. We have added a new pass that changes variable types and
can convert a simple data types to another. This pass allows us to swap
from double-precision to single-precision with stochastic rounding. The
implementation is given by Listing 4.7 and an example of it in operation is

18

4.1. Stochastic Rounding in DaCe

Listing 4.5 Xorshift 64-bit RNG

1 DACE_HOST_DEVICE static inline uint64_t xorshift64() {

2 rng_state_64 ^= rng_state_64 << 13;

3 rng_state_64 ^= rng_state_64 >> 7;

4 rng_state_64 ^= rng_state_64 << 17;

5 return rng_state_64;

6 }

Listing 4.6 Preloaded random number generator using a shared queue

1 DACE_HOST_DEVICE static uint64_t get_preloaded_random_u64() {

2 struct SharedRandomQueue {

3 std::array<uint64_t, 10000> data;

4 std::atomic<bool> initialized{false};

5

6 SharedRandomQueue() { initialize(); }

7

8 void initialize() {

9 for (auto& x : data) { x = float32sr::get_random_u64(); }

10 initialized.store(true, std::memory_order_release);

11 }

12

13 uint64_t get(size_t idx) const {

14 return data[idx % data.size()];

15 }

16 };

17

18 static SharedRandomQueue shared_queue;

19 thread_local static size_t thread_index = 0;

20

21 size_t current_index = thread_index;

22 thread_index = (thread_index + 1) % shared_queue.data.size();

23

24 return shared_queue.get(current_index);

25 }

given by Listing 4.8.

4.1.1 Implementation Validation

To verify the correctness of our stochastic rounding (SR) implementations, we
developed a comprehensive PyTest suite. We test to ensure that SR initializa-
tions are constant for assignments of the same type; test that high-precision
inputs are stochastically rounded according to the expected probabilities;

19

4.1. Stochastic Rounding in DaCe

Listing 4.7 DaCe Pass for changing data types within an SDFG

1 class TypeChange(ppl.Pass):

2 CATEGORY: str = 'Simplification'
3

4 def __init__(self, from_type: dace.typeclass = None, to_type:

dace.typeclass = None):↪→
5 self._from_type = from_type

6 self._to_type = to_type

7 self._swaps_count = 0

8

9 def modifies(self) -> ppl.Modifies:

10 return ppl.Modifies.Nothing

11

12 def should_reapply(self, modified: ppl.Modifies) -> bool:

13 return False

14

15 def apply_pass(self, sdfg: SDFG, _) -> Optional[int]:

16 if hasattr(sdfg, "orig_sdfg") and sdfg.orig_sdfg: # apply the

pass to orig cpu sdfg↪→
17 if hasattr(sdfg.orig_sdfg, "all_sdfgs_recursive"):

18 for nested_sdfg in

sdfg.orig_sdfg.all_sdfgs_recursive():↪→
19 self._change_sdfg_type(nested_sdfg)

20

21 for nested_sdfg in sdfg.all_sdfgs_recursive():

22 self._change_sdfg_type(nested_sdfg)

23

24 return self._swaps_count

25

26

27 def report(self, pass_retval: int) -> str:

28 if pass_retval is None:

29 return "No arrays found to analyze."

30 return

f"Analyzed {pass_retval} arrays and printed their types."↪→
31

32 # Private methods that iterate over the SDFG omitted for brevity

that both the CPU and GPU implementations exhibit consistent behavior
across; and all supported arithmetic and comparison operators are verified
to confirm that SR is correctly applied throughout.

We also evaluate mixed rounding modes to ensure that stochastic rounding
can coexist with standard rounding methods without introducing errors. Spe-
cial attention is given to special values like subnormal numbers, which consti-
tute a range of very small floating-point values requiring distinct handling. In

20

4.2. Easier Evaluation of Schemes: SR in NPBench

Listing 4.8 Applying the TypeChange pass through a DaCe pipeline

1 from dace.transformation import pass_pipeline as ppl

2 from dace.transformation.passes.type_change import TypeChange

3

4 tc = TypeChange(dace.float64, dace.float32sr)

5 type_change_pipeline = ppl.Pipeline([tc])

6 results_of_pass = type_change_pipeline.apply_pass(sdfg, {})

7 output_of_SDFG_call = sdfg(single_precision_input)

single-precision, this range spans approximately [1.45× 10−45, 1.18× 10−38]
values outside this interval are rounded to zero. Interestingly, when the
fast-math compiler optimization is enabled, as it the default for DaCe, it au-
tomatically forces subnormal values to zeros which required extra handling
to test these values.

4.2 Easier Evaluation of Schemes: SR in NPBench

With validation complete, our next goal is to quantify the performance impact
and accuracy trade-offs of stochastic rounding in a broader set of workloads.

NPBench offers a diverse collection of kernels, spanning matrix operations,
stencils, statistical functions, and physical simulations. It also provides infras-
tructure to generate varied input sizes and perform automated benchmarking.
Crucially, our DaCe type-change pass allows us to apply SR to all existing
DaCe kernels without modification, enabling consistent and large-scale eval-
uation.

However, NPBench is designed primarily to measure run-time performance.
To evaluate rounding errors, we extend the framework with a dedicated error
measurement suite. In addition, we modify the input generation procedure
so that each run produces randomized data while using fixed seeds, ensuring
that inputs are identical across the different implementations being compared.

4.2.1 Performance

We first measure performance on medium-sized NPBench inputs. This size
regime is chosen to minimise variability between runs while still allowing
many iterations across multiple kernels, including repeated sub-runs for SR
variants.

Our initial comparison examines the default SR implementation that uses the
high-quality Mersenne Twister RNG and an SR variant without RNG, against
a DaCe Float32 RTN baseline (Figure 4.1). The results show our unoptimized
implementation introduces a 54× slowdown, far exceeding the anticipated

21

4.2. Easier Evaluation of Schemes: SR in NPBench

5–10× emulation cost. Even without RNG, the SR infrastructure alone incurs
an unavoidable 4× slowdown per operation.

Total 34.13 ms 53.5 4.2

Flo
at3

2-R
TN

SR
 (M

ers
en

ne
 Tw

iste
r)

SR
 (O

ve
rhe

ad
)

2mm
3mm
atax

cholesky
correlat

covarian
fdtd_2d
gemm

heat3d
jacobi1d
jacobi2d
ludcmp

mvt
seidel2d

symm
syr2k

syrk

Be
nc

hm
ar

ks

21.04 ms 229.0 8.3
8.60 ms 191.0 6.2

7.71 ms(6) 105.0 4.2(1)

0.12 s 21.1 6.4
13.18 ms 57.7 2.4(1)

94.64 ms 15.8 4.9
6.77 ms(3) 161.0 7.0
8.13 ms 217.0(4) 5.8
2.81 ms 290.0 12.2

6.03 ms(1) 59.9 2.8
5.55 ms 161.0 7.7
0.34 s 19.4 5.9

13.53 ms(1) 91.1 3.6
0.39 s 8.6 2.0

0.25 s(2) 8.7 2.0
0.57 s(2) 22.7 1.7
0.43 s(2) 8.9 1.2(1)

Figure 4.1: The top panel reports the average slowdown (relative to DaCe Float32 RTN) for
our unoptimized implementation, and the average slowdown introduced by the SR infrastructure
without RNG. Averages are computed as geometric means across all benchmarks. The lower
panel presents per-benchmark slowdowns.

We then evaluate alternative RNG schemes to identify a more practical
choice (Figure 4.2). All alternatives significantly reduce the overhead. The
lightweight Linear Congruential Generator (LCG) is particularly notable,
offering an order-of-magnitude speed-up over the Mersenne Twister and
bringing the total slowdown to just 8× relative to Float32 RTN. This level of

22

4.2. Easier Evaluation of Schemes: SR in NPBench

overhead is acceptable if the RNG maintains strong error-reduction proper-
ties.

It is important to emphasize the broader performance context: if SR enables a
double-precision application to run stably in single precision, then the move
to modern GPUs or other accelerators can deliver large net speed-ups despite
the emulation cost.

Total 1.82 s 3.2 6.6 2.4

SR
 (M

ers
en

ne
 Tw

iste
r)

Circ
ula

r B
uff

er LC
G

Xors
hif

t

2mm
3mm
atax

cholesky
correlat

covarian
fdtd_2d
gemm

heat3d
jacobi1d
jacobi2d
ludcmp

mvt
seidel2d

symm
syr2k

syrk

Be
nc

hm
ar

ks

4.84 s 4.9 7.2 4.0(92)

1.65 s 5.3 7.7 3.4(115)

0.81 s 5.0 8.9 5.9(117)

2.43 s 1.1 3.1 3.1(18)

0.76 s 4.2(1) 8.7 7.9(209)

1.50 s 1.0 3.1 2.9(33)

1.10 s 4.9 9.8 3.1(204)

1.77 s 5.6(1) 10.4 7.8(51)

0.82 s 5.1 15.6 1.6(225)

0.36 s 4.8 8.9 9.0
0.89 s 4.9 10.3 3.3(199)

6.65 s 1.1 3.1 3.1
1.23 s 4.9 8.9 6.2(49)

3.38 s 2.1 3.7 3.7
2.22 s 1.4 3.5 3.5

12.86 s 4.2 8.7 8.5
3.79 s 3.2 4.4 4.4

Figure 4.2: Runtime comparison of alternative RNG schemes across medium NPBench bench-
marks. Mersenne Twister is used as the baseline.

4.2.2 Rounding Error

Given the substantial performance overhead of SR, it must deliver a pro-
portional reduction in numerical error. Using our extended NPBench error-
measurement suite, we evaluated four RNG variants (Figure 4.3). Across
benchmarks, high- and low-quality RNGs produce nearly identical accuracy
gains. Although average relative errors are already low in the Float32 RTN
baseline, SR notably reduces the maximum observed error—particularly for
the atax, 2mm, and 3mm kernels.

23

4.2. Easier Evaluation of Schemes: SR in NPBench

An unexpected result is that the circular-buffer approach underperforms rel-
ative to all other RNG implementations, despite using a large precomputed
buffer of 10,000 high-quality Mersenne Twister values. The LCG emerges
as the best overall choice, offering both strong accuracy and minimal run-
time overhead. Future exploration could include related generators such
as the Permuted Congruential Generator2, which augments an LCG with a
permutation function to improve statistical properties.

We extended the analysis by evaluating NPBench kernels under different
data initialization schemes to assess error improvement across various dis-
tributions (Figure 4.4, Figure 4.5). While mean relative errors show good
improvements, they remain close to the theoretical truncation cost when
converting double-precision values to single-precisions and so is not so
valuable.

The reduction in maximum errors is particularly noteworthy. Even with
relatively small input sizes, many benchmarks exhibit instances of extremely
large errors that SR effectively mitigates. For example, under the Uni-
form[0,1000] distribution, the average maximum relative error of 11.2× is
reduced by approximately half to 5.0× when using SR. This substantial re-
duction in error outliers suggests that SR’s primary benefit lies in preventing
catastrophic accumulation errors rather than improving typical-case precision.
We anticipate that larger input sizes would amplify these benefits, with SR
providing more pronounced reductions in both mean and maximum relative
errors as accumulation chains lengthen.

2https://www.pcg-random.org/

24

https://www.pcg-random.org/

4.2. Easier Evaluation of Schemes: SR in NPBench

Circular 1.0 5.1e-07 4.9e-07 0.7 4.1e-05 6.0e-05
2mm3mmataxcorrelatcovarianfdtd_2dgemmheat3djacobi1djacobi2dmvtseidel2dsymmsyr2k

0.5 7.0e-07 1.4e-06 0.5 8.5e-03 1.7e-02
0.5 2.0e-06 3.8e-06 0.5 2.2e-02 4.6e-02
2.1 1.6e-06 7.7e-07 1.1 9.9e+00 9.3e+00
0.6 1.1e-06 1.8e-06 0.6 1.3e-07 2.0e-07
0.6 1.4e-06 2.4e-06 0.5 5.5e-08 1.1e-07
0.5 1.1e-06 2.2e-06 0.2 5.1e-06 2.2e-05
1.6 3.7e-07 2.4e-07 1.3 1.9e-04 1.5e-04
0.7 2.4e-08 3.3e-08 0.7 7.2e-08 1.1e-07
0.4 5.1e-07 1.3e-06 0.2 6.3e-07 3.0e-06
5.1 2.9e-07 5.6e-08 1.4 2.5e-07 1.8e-07
1.0 9.1e-07 9.1e-07 0.6 4.1e-03 6.6e-03

13.4 8.1e-07 6.0e-08 3.0 5.9e-07 2.0e-07
0.7 1.8e-07 2.5e-07 0.8 1.8e-04 2.3e-04
0.7 1.0e-07 1.5e-07 0.7 6.7e-04 9.2e-04

Mersenne
Twister 0.5 2.6e-07 4.9e-07 0.5 2.9e-05 6.0e-05

2mm3mmataxcorrelatcovarianfdtd_2dgemmheat3djacobi1djacobi2dmvtseidel2dsymmsyr2k

0.6 8.6e-07 1.4e-06 0.7 1.1e-02 1.7e-02
0.4 1.7e-06 3.8e-06 0.5 2.2e-02 4.6e-02
0.6 4.9e-07 7.7e-07 0.6 5.8e+00 9.3e+00
0.7 1.2e-06 1.8e-06 0.7 1.3e-07 2.0e-07
0.6 1.6e-06 2.4e-06 0.6 6.5e-08 1.1e-07
0.5 1.0e-06 2.2e-06 0.2 4.8e-06 2.2e-05
0.6 1.5e-07 2.4e-07 0.6 9.6e-05 1.5e-04
0.5 1.6e-08 3.3e-08 0.5 5.3e-08 1.1e-07
0.1 1.2e-07 1.3e-06 0.1 2.6e-07 3.0e-06
0.6 3.4e-08 5.6e-08 0.6 1.1e-07 1.8e-07
0.6 5.9e-07 9.1e-07 0.6 4.0e-03 6.6e-03
0.7 4.2e-08 6.0e-08 0.7 1.4e-07 2.0e-07
0.6 1.6e-07 2.5e-07 0.6 1.5e-04 2.3e-04
0.7 1.0e-07 1.5e-07 0.6 5.9e-04 9.2e-04

LCG 0.6 2.8e-07 4.9e-07 0.5 3.0e-05 6.0e-05
2mm3mmataxcorrelatcovarianfdtd_2dgemmheat3djacobi1djacobi2dmvtseidel2dsymmsyr2k

0.6 8.5e-07 1.4e-06 0.6 1.1e-02 1.7e-02
0.4 1.7e-06 3.8e-06 0.5 2.1e-02 4.6e-02
0.6 4.5e-07 7.7e-07 0.6 5.2e+00 9.3e+00
0.6 1.2e-06 1.8e-06 0.6 1.2e-07 2.0e-07
0.6 1.5e-06 2.4e-06 0.6 6.1e-08 1.1e-07
0.5 1.1e-06 2.2e-06 0.2 5.3e-06 2.2e-05
0.6 1.5e-07 2.4e-07 0.6 9.3e-05 1.5e-04
0.5 1.8e-08 3.3e-08 0.5 5.6e-08 1.1e-07
0.2 2.5e-07 1.3e-06 0.1 3.1e-07 3.0e-06
0.8 4.4e-08 5.6e-08 0.7 1.3e-07 1.8e-07
0.7 6.1e-07 9.1e-07 0.6 3.9e-03 6.6e-03
0.8 4.8e-08 6.0e-08 0.8 1.5e-07 2.0e-07
0.6 1.6e-07 2.5e-07 0.6 1.4e-04 2.3e-04
0.7 1.0e-07 1.5e-07 0.6 5.8e-04 9.2e-04

Xorshift 0.5 2.6e-07 4.9e-07 0.5 3.0e-05 6.0e-05

Relative
(mean)

SR
(mean)

RTN
(mean)

Relative
(max)

SR
(max)

RTN
(max)

2mm3mmataxcorrelatcovarianfdtd_2dgemmheat3djacobi1djacobi2dmvtseidel2dsymmsyr2k

0.6 8.1e-07 1.4e-06 0.6 9.9e-03 1.7e-02
0.4 1.6e-06 3.8e-06 0.4 1.9e-02 4.6e-02
0.7 5.3e-07 7.7e-07 0.7 6.4e+00 9.3e+00
0.7 1.2e-06 1.8e-06 0.6 1.2e-07 2.0e-07
0.7 1.6e-06 2.4e-06 0.6 6.8e-08 1.1e-07
0.5 1.1e-06 2.2e-06 0.3 5.6e-06 2.2e-05
0.6 1.5e-07 2.4e-07 0.6 9.5e-05 1.5e-04
0.5 1.8e-08 3.3e-08 0.5 5.9e-08 1.1e-07
0.1 9.7e-08 1.3e-06 0.1 2.2e-07 3.0e-06
0.8 4.3e-08 5.6e-08 0.7 1.2e-07 1.8e-07
0.6 5.9e-07 9.1e-07 0.6 4.0e-03 6.6e-03
0.8 4.6e-08 6.0e-08 0.7 1.4e-07 2.0e-07
0.6 1.6e-07 2.5e-07 0.7 1.5e-04 2.3e-04
0.7 1.0e-07 1.5e-07 0.6 5.9e-04 9.2e-04

Be
nc

hm
ar

ks

Figure 4.3: A comparison of RNGs and their effect of SR quality. The two “Relative” columns
show the change in mean error and max error when going from RTN to SR. Performed on subset
of medium NPBench benchmarks over 10 runs with each SR sum instance averaged over 5
samples. The input data is generated from a uniform random distribution with a minimum of
zero and a maximum of one.

25

4.2. Easier Evaluation of Schemes: SR in NPBench

U(0, 103)
TotalU(0, 103) 0.5 1.54e-07 3.26e-07 0.4 5.08e+00 1.17e+01

2mm
3mm
atax
bicg

correlat
covarian
fdtd_2d
gemm

gemver
gesummv

heat3d
jacobi1d
jacobi2d

lu
ludcmp

mvt
seidel2d

symm
syr2k

syrk
trisolv

0.4 1.99e-07 4.55e-07 0.4 2.46e+05 5.50e+05
0.4 4.02e-07 8.94e-07 0.4 5.93e+08 1.42e+09
0.4 1.09e-07 2.44e-07 0.5 1.09e+07 2.33e+07
0.5 1.75e-07 3.78e-07 0.5 2.51e+02 5.46e+02
0.6 5.71e-07 1.01e-06 0.5 7.40e-08 1.57e-07
0.7 5.63e-07 8.27e-07 0.5 1.86e-02 3.81e-02
0.4 4.67e-07 1.33e-06 0.3 7.16e-04 2.64e-03
0.4 3.80e-08 8.50e-08 0.5 2.29e+00 5.04e+00
0.5 9.01e-08 1.86e-07 0.5 4.14e+13 9.16e+13
0.4 1.24e-07 2.79e-07 0.5 1.74e+02 3.69e+02
0.5 1.38e-08 2.83e-08 0.4 3.23e-05 9.18e-05
0.3 5.87e-08 1.91e-07 0.2 1.21e-04 6.66e-04
0.4 2.06e-08 4.63e-08 0.4 5.56e-05 1.29e-04
0.4 2.64e-05 7.01e-05 0.3 8.19e+01 2.36e+02
0.3 8.79e-05 2.62e-04 0.5 1.27e+02 2.36e+02
0.5 1.64e-07 3.60e-07 0.5 2.06e+02 4.50e+02
0.5 2.37e-08 4.87e-08 0.4 5.72e-05 1.36e-04
0.5 3.39e-08 7.46e-08 0.5 2.80e+00 5.70e+00
0.6 2.64e-08 4.67e-08 0.4 3.73e+00 8.40e+00
0.6 2.95e-08 5.29e-08 0.5 4.00e+00 8.03e+00

1.0 2.14e-08 2.14e-08 1.0 9.13e-05 9.13e-05

U(0, 10−9)
TotalU(0, 10−9) 0.8 2.27e-10 2.89e-10 0.8 4.27e-18 5.54e-18

2mm
3mm
atax
bicg

correlat
covarian
fdtd_2d
gemm

gemver
gesummv

heat3d
jacobi1d
jacobi2d

lu
ludcmp

mvt
seidel2d

symm
syr2k

syrk
trisolv

0.9 4.04e-08 4.41e-08 0.8 1.28e-16 1.51e-16
717.4 8.26e-24 1.15e-26 115.5 1.11e-35 9.64e-38

0.5 2.40e-18 5.25e-18 0.4 9.48e-30 2.25e-29
0.5 5.17e-11 1.14e-10 0.5 2.69e-22 5.59e-22
0.6 6.50e-16 1.16e-15 0.5 5.13e-27 1.03e-26
0.5 7.01e-16 1.30e-15 0.5 1.81e-26 3.72e-26
0.3 2.37e-07 6.79e-07 0.4 9.18e-16 2.58e-15
0.5 4.57e-13 1.01e-12 0.4 2.27e-24 5.12e-24
0.9 1.47e-08 1.70e-08 0.8 7.67e-17 9.65e-17
0.4 4.07e-11 9.18e-11 0.5 1.61e-22 3.55e-22
0.5 1.56e-08 3.29e-08 0.6 5.44e-17 8.69e-17
0.3 6.28e-08 2.31e-07 0.2 1.35e-16 5.63e-16
0.4 2.14e-08 5.00e-08 0.4 5.47e-17 1.25e-16
0.5 2.49e-05 5.46e-05 0.5 3.71e-02 7.34e-02
0.4 8.31e-05 2.12e-04 1.1 1.05e-01 9.96e-02
0.8 2.22e-08 2.62e-08 0.8 8.44e-17 1.08e-16
0.5 2.47e-08 5.22e-08 0.5 5.65e-17 1.24e-16
1.0 4.29e-08 4.21e-08 1.0 1.39e-16 1.37e-16
0.7 3.33e-08 4.45e-08 1.1 1.41e-16 1.29e-16
0.8 3.27e-08 3.99e-08 1.1 1.52e-16 1.35e-16

1.0 2.14e-08 2.14e-08 1.0 9.13e-05 9.13e-05

U(0, 1)
TotalU(0, 1) 0.5 2.02e-07 4.25e-07 0.4 2.78e-05 6.67e-05

2mm
3mm
atax
bicg

cholesky
correlat

covarian
fdtd_2d
gemm

gemver
gesummv

heat3d
jacobi1d
jacobi2d

lu
ludcmp

mvt
seidel2d

symm
syr2k

syrk
trisolv

0.5 2.06e-07 4.49e-07 0.4 2.49e-04 5.59e-04
0.4 3.99e-07 9.10e-07 0.4 5.99e-04 1.35e-03
0.5 1.08e-07 2.37e-07 0.4 1.11e-02 2.59e-02
0.5 1.74e-07 3.83e-07 0.5 2.66e-04 5.70e-04
0.6 1.64e-05 2.68e-05 0.6 4.44e-03 7.63e-03
0.6 6.14e-07 9.66e-07 0.6 7.84e-08 1.42e-07
0.6 6.03e-07 1.03e-06 0.5 1.84e-08 3.89e-08
0.5 5.47e-07 1.18e-06 0.3 7.85e-07 2.64e-06
0.4 3.72e-08 8.30e-08 0.4 2.12e-06 4.99e-06
0.5 8.82e-08 1.87e-07 0.5 1.30e-01 2.69e-01
0.4 2.46e-07 5.50e-07 0.4 1.49e-03 3.66e-03
0.4 1.30e-08 3.16e-08 0.4 3.55e-08 1.01e-07
0.2 7.09e-08 3.57e-07 0.1 1.65e-07 1.37e-06
0.4 2.27e-08 5.37e-08 0.4 6.89e-08 1.59e-07
0.5 3.29e-05 6.16e-05 0.3 5.51e-02 2.08e-01
0.3 7.76e-05 2.44e-04 0.3 6.98e-02 2.08e-01
0.4 1.71e-07 3.81e-07 0.5 2.14e-04 4.42e-04
0.5 2.42e-08 4.90e-08 0.5 5.82e-08 1.23e-07
0.5 3.44e-08 7.52e-08 0.4 2.73e-06 6.51e-06
0.6 2.63e-08 4.60e-08 0.4 3.65e-06 8.61e-06
0.6 3.04e-08 5.48e-08 0.5 3.77e-06 8.19e-06

1.0 2.14e-08 2.14e-08 1.0 9.13e-05 9.13e-05

U(200, 400)
TotalU(200, 400) 0.5 2.10e-07 4.47e-07 0.4 1.64e+00 4.11e+00

SR
32

/RT
N32

(m
ea

n r
el) SR

32

(m
ea

n r
el) RT

N32

(m
ea

n r
el)

SR
32

/RT
N32

(m
ax

 er
r) SR

32

(m
ax

 er
r)

RT
N32

(m
ax

 er
r)

2mm
3mm
atax
bicg

cholesky
correlat

covarian
fdtd_2d
gemm

gemver
gesummv

heat3d
jacobi1d
jacobi2d

lu
ludcmp

mvt
seidel2d

symm
syr2k

syrk
trisolv

0.5 1.99e-07 4.35e-07 0.5 4.92e+04 1.07e+05
0.5 4.09e-07 9.07e-07 0.4 7.81e+07 1.76e+08
0.5 1.11e-07 2.46e-07 0.4 2.25e+06 5.24e+06
0.4 1.77e-07 3.95e-07 0.5 9.11e+01 1.88e+02
0.4 1.51e-05 3.53e-05 0.5 7.00e-01 1.51e+00
0.8 1.29e-06 1.52e-06 0.6 9.17e-08 1.56e-07
0.9 1.23e-06 1.44e-06 0.4 6.90e-04 1.61e-03
0.3 6.65e-08 2.17e-07 0.4 3.06e-04 7.42e-04
0.4 3.69e-08 8.31e-08 0.4 8.04e-01 1.95e+00
0.5 9.06e-08 1.85e-07 0.5 2.36e+12 4.95e+12
0.4 2.21e-07 4.92e-07 0.4 4.90e+02 1.11e+03
0.4 1.44e-08 3.55e-08 0.4 1.97e-05 5.37e-05
0.2 6.40e-08 3.06e-07 0.1 7.61e-05 5.65e-04
0.4 2.30e-08 5.50e-08 0.4 3.76e-05 8.38e-05
0.4 7.24e-05 2.00e-04 0.1 1.60e+01 1.15e+02
0.4 1.39e-04 3.63e-04 0.2 1.58e+01 1.04e+02
0.5 1.81e-07 4.01e-07 0.5 8.42e+01 1.72e+02
0.5 2.53e-08 5.44e-08 0.5 3.64e-05 7.61e-05
0.5 3.71e-08 7.97e-08 0.5 8.85e-01 1.95e+00
0.6 2.75e-08 4.78e-08 0.4 1.36e+00 3.24e+00
0.6 2.98e-08 5.29e-08 0.5 1.17e+00 2.48e+00

1.0 2.14e-08 2.14e-08 1.0 9.13e-05 9.13e-05

Be
nc

hm
ar

ks

Figure 4.4: Error comparison across data initialization types on small NPBench kernels using the
Mersenne Twister. Each result is averaged over 10 runs with each SR sum instance averaged
over 5 samples.

26

4.2. Easier Evaluation of Schemes: SR in NPBench

U(−109, 109)
TotalU(−109, 109) 0.5 5.89e-07 1.09e-06 0.5 3.10e+09 6.38e+09

2mm
3mm
atax
bicg

correlat
covarian
fdtd_2d
gemm

gesummv
heat3d

jacobi1d
jacobi2d

lu
ludcmp

mvt
seidel2d

symm
syr2k

syrk
trisolv

0.5 1.03e-06 2.22e-06 0.5 2.01e+22 4.32e+22
0.5 1.85e-06 3.72e-06 0.4 2.65e+31 6.11e+31
0.5 6.73e-07 1.47e-06 0.4 9.55e+22 2.23e+23
0.5 8.89e-07 1.77e-06 0.5 2.00e+13 4.25e+13
0.6 4.56e-07 8.14e-07 0.5 6.44e-08 1.31e-07
0.6 4.87e-07 8.32e-07 0.5 7.06e+10 1.54e+11
0.4 9.84e-07 2.75e-06 0.2 1.29e+03 5.26e+03
0.6 2.40e-07 4.04e-07 0.5 8.56e+11 1.87e+12
0.6 6.27e-07 1.10e-06 0.5 1.43e+13 2.86e+13
0.8 1.08e-07 1.42e-07 0.9 3.20e+01 3.67e+01
0.3 2.61e-07 7.56e-07 0.4 3.33e+01 7.54e+01
0.6 1.51e-07 2.37e-07 0.7 3.19e+01 4.48e+01
0.4 4.69e-05 1.30e-04 0.2 7.44e+07 3.14e+08
0.7 1.61e-04 2.34e-04 0.5 1.63e+08 3.14e+08
0.4 9.87e-07 2.19e-06 0.4 1.79e+13 4.26e+13
0.7 1.64e-07 2.43e-07 0.7 3.19e+01 4.65e+01
0.5 2.66e-07 5.56e-07 0.5 1.05e+12 2.18e+12
0.6 1.53e-07 2.43e-07 0.5 1.28e+12 2.68e+12
0.6 1.50e-07 2.58e-07 0.5 3.23e+12 6.75e+12

1.0 2.14e-08 2.14e-08 1.0 9.13e-05 9.13e-05

U(−103, 103)
TotalU(−103, 103) 0.5 5.59e-07 1.06e-06 0.5 1.60e+00 2.96e+00

2mm
3mm
atax
bicg

correlat
covarian
fdtd_2d
gemm

gemver
gesummv

heat3d
jacobi1d
jacobi2d

lu
ludcmp

mvt
seidel2d

symm
syr2k

syrk
trisolv

0.4 1.13e-06 2.97e-06 0.5 1.86e+04 3.90e+04
0.4 1.50e-06 3.65e-06 0.4 2.59e+07 6.32e+07
0.5 7.57e-07 1.65e-06 0.4 9.70e+04 2.29e+05
0.5 9.09e-07 1.96e-06 0.5 1.88e+01 4.17e+01
0.5 4.48e-07 9.26e-07 0.4 6.66e-08 1.58e-07
0.5 4.40e-07 9.74e-07 0.4 6.87e-02 1.68e-01
0.4 1.09e-06 2.51e-06 0.3 1.43e-03 5.07e-03
0.6 2.52e-07 4.27e-07 0.5 9.65e-01 1.84e+00
0.6 3.52e-07 5.57e-07 0.5 1.04e+12 1.93e+12
0.4 5.10e-07 1.21e-06 0.4 1.26e+01 2.94e+01
0.7 8.75e-08 1.18e-07 0.8 3.05e-05 3.59e-05
0.4 2.82e-07 7.98e-07 0.4 3.28e-05 8.60e-05
0.5 1.30e-07 2.63e-07 0.8 3.03e-05 3.97e-05
0.6 6.19e-05 1.08e-04 1.3 2.12e+02 1.62e+02
0.8 1.20e-04 1.49e-04 1.3 2.04e+02 1.62e+02
0.5 9.54e-07 2.11e-06 0.5 1.87e+01 3.86e+01
0.7 1.64e-07 2.37e-07 0.6 3.03e-05 4.92e-05
0.5 2.64e-07 5.49e-07 0.4 9.56e-01 2.31e+00
0.6 1.51e-07 2.57e-07 0.5 1.25e+00 2.65e+00
0.6 1.37e-07 2.25e-07 0.5 3.13e+00 6.86e+00

1.0 2.14e-08 2.14e-08 1.0 9.13e-05 9.13e-05

N(0, 1)
TotalN(0, 1) 0.6 6.31e-07 1.14e-06 0.5 1.97e-05 3.92e-05

SR
32

/RT
N32

(m
ea

n r
el) SR

32

(m
ea

n r
el) RT

N32

(m
ea

n r
el)

SR
32

/RT
N32

(m
ax

 er
r) SR

32

(m
ax

 er
r)

RT
N32

(m
ax

 er
r)

2mm
3mm
atax
bicg

correlat
covarian
fdtd_2d
gemm

gemver
gesummv

heat3d
jacobi1d
jacobi2d

lu
ludcmp

mvt
seidel2d

symm
syr2k

syrk
trisolv

0.4 1.09e-06 2.50e-06 0.4 1.01e-04 2.29e-04
0.5 1.64e-06 3.61e-06 0.4 2.38e-04 5.87e-04
0.5 9.07e-07 1.94e-06 0.4 4.93e-04 1.16e-03
0.5 8.16e-07 1.68e-06 0.5 5.81e-05 1.27e-04
0.6 4.71e-07 8.16e-07 0.4 6.16e-08 1.48e-07
0.5 3.88e-07 7.70e-07 0.5 2.17e-07 4.52e-07
0.4 8.41e-07 2.12e-06 0.3 3.23e-06 1.06e-05
0.6 2.82e-07 4.94e-07 0.4 2.97e-06 6.86e-06
0.7 4.09e-07 6.16e-07 0.4 2.26e-02 6.40e-02
0.4 9.80e-07 2.25e-06 0.5 2.00e-04 4.26e-04
0.7 1.44e-07 2.03e-07 1.0 1.19e-07 1.19e-07
0.4 3.17e-07 7.89e-07 0.3 5.12e-08 1.74e-07
0.6 3.17e-07 5.44e-07 1.0 1.18e-07 1.18e-07
0.6 8.29e-05 1.42e-04 0.7 3.79e-01 5.34e-01
0.4 7.01e-05 1.70e-04 0.3 1.67e-01 5.34e-01
0.6 1.11e-06 1.80e-06 0.4 5.57e-05 1.27e-04
0.7 1.65e-07 2.43e-07 1.0 1.02e-07 1.02e-07
0.7 3.13e-07 4.56e-07 0.5 3.55e-06 7.03e-06
0.7 1.55e-07 2.19e-07 0.5 4.23e-06 8.24e-06
0.6 1.72e-07 2.78e-07 0.4 1.05e-05 2.34e-05

1.0 2.14e-08 2.14e-08 1.0 9.13e-05 9.13e-05

Be
nc

hm
ar

ks

Figure 4.5: (Continued) Error comparison across data initialization types on small NPBench
kernels using the Mersenne Twister. Each result is averaged over 10 runs with each SR sum
instance averaged over 5 samples.

27

Chapter 5

Results

With our stochastic rounding implementations validated and benchmarked,
we now turn to reproducing established experiments from the literature.
Previously, we extended the analysis of [17] on the convergence of the
harmonic series (Table 3.1) and replicated the Lorenz system simulation
of [21] (Figure 3.1). We now focus on two canonical numerical kernels
examined by [4]: the dot product and the general matrix multiply (GEMM).
Both are dominated by repeated accumulation operations, making them ideal
for isolating and quantitatively assessing the influence of stochastic rounding
on error growth. Their algorithmic simplicity minimizes confounding factors,
ensuring that any differences arise primarily from rounding effects, while
their ubiquity guarantees that the insights gained are directly applicable to a
wide range of scientific computing workloads.

We evaluate both kernels under a variety of data initializations: purely ran-
dom noise (masked to avoid extreme outliers); values drawn from a standard
Gaussian distribution; strictly positive uniformly distributed values spanning
small, medium, and large ranges; and medium-range uniformly distributed
values centered at zero. These configurations are chosen to emulate the
diversity of value distributions encountered in scientific computing. For
example, temperature data in Kelvin typically lies within a narrow range of
roughly 200–400.

5.1 Dot Product

We perform two sets of experiments: one at single-precision (Figure 5.2) and
the other at half-precision (Figure ??). Single-precision floating-point can
represent values approximately in the range ±10−38 to ±1038, while half-
precision is constrained to roughly ±6× 10−8 to ±65, 504. This significant
difference in representable ranges necessitates using smaller data ranges for
the half-precision experiments to avoid overflow conditions.

28

5.1. Dot Product

In both experimental settings, the choice of data initialization scheme pro-
foundly influences the relative improvement of stochastic rounding over
round-to-nearest. For distributions symmetric about zero, SR yields only
modest error reductions, typically within the same order of magnitude as
RTN. In contrast, for distributions where partial sums grow predominantly
in a single direction, such as uniformly distributed positive values, the effect
becomes far more pronounced, demonstrating SR’s particular strength in
mitigating systematic accumulation bias.

For single-precision experiments, once vector lengths exceed approximately
one million elements, RTN errors increase rapidly while SR errors remain
tightly bounded, achieving up to three orders of magnitude lower error
than RTN. This behavior aligns closely with the theoretical predictions of [4].
The half-precision results show a similar pattern with RTN errors beginning
to outpace SR around the two-thousand element threshold, reflecting the
reduced precision’s greater susceptibility to accumulation errors.

The experiments also illuminate the fundamental trade-off between Float16
and BFloat16 formats. While BFloat16 consistently exhibits higher absolute
errors due to its reduced precision (7-bit vs. 10-bit significand), its wider
exponent range (8 bits vs. 5 bits) enables completion of all experimental
configurations. Float16 accumulations that exceed 65,536 overflow to infinity,
forcing us to discard those runs. This limitation is particularly restrictive for
distributions like Uniform[0,20], where Float16 could only reliably handle
vectors of 512 elements before encountering overflow, whereas BFloat16
successfully processed the full range of vector sizes.

When accumulation is performed using higher-precision intermediate storage,
the differences between RTN and SR become negligible. This occurs because
the expanded significand eliminates the accumulation error that stochastic
rounding is specifically designed to mitigate, confirming that SR’s benefits
are most pronounced when computational precision matches the precision
limitations of the target format.

It is worth noting that we include the single-element vector case in our plots
to establish the baseline truncation error when converting from higher to
lower precision—this represents the unavoidable precision loss inherent to the
format conversion itself. This baseline error corresponds to the unit roundoff
of the target format. For single-precision floating-point, the unit roundoff is
∼ 6.0× 10−8; for Float16, it is ∼ 4.9× 10−4; and for BFloat16, ∼ 3.9× 10−3.
These theoretical values are clearly reflected as the starting points in our
error plots, providing a reference against which the accumulation-dependent
error growth can be measured.

29

5.1. Dot Product

Vector Length (log scale)
10 12

10 10

10 8

10 6

10 4

10 2

100

Re
la

tiv
e

Er
ro

r (
lo

g
sc

al
e)

Uniform [0, 0.001]

Vector Length (log scale)

Re
la

tiv
e

Er
ro

r (
lo

g
sc

al
e)

Guassian with Mean 0, Std. Dev. 1

Vector Length (log scale)
10 12

10 10

10 8

10 6

10 4

10 2

100

Re
la

tiv
e

Er
ro

r (
lo

g
sc

al
e)

Uniform [0, 1]

Vector Length (log scale)

Re
la

tiv
e

Er
ro

r (
lo

g
sc

al
e)

Uniform [-1000, 1000]

101 103 105 107

Vector Length (log scale)

10 12

10 10

10 8

10 6

10 4

10 2

100

Re
la

tiv
e

Er
ro

r (
lo

g
sc

al
e)

Uniform [200, 400]

101 103 105 107

Vector Length (log scale)

Re
la

tiv
e

Er
ro

r (
lo

g
sc

al
e)

Pure Random ±[1e-6, 1e6]

Float32 Float32sr Float32 with Float64 accum. Float32sr with Float64 accum.

Figure 5.1: A comparison of relative errors when reducing precision from double to single precision
using either RTN or SR for the dot product across different data distributions. We also consider
a mixed-precision case in which the intermediate sum is stored in double precision. Each data
point represents the median over 50 runs, with shaded bands indicating the inter-quartile range.
For SR, each point is further averaged over 20 stochastic sub-runs.

30

5.1. Dot Product

Vector Length (log scale)
10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r (
lo

g
sc

al
e)

Uniform [0, 0.01]

Vector Length (log scale)

Re
la

tiv
e

Er
ro

r (
lo

g
sc

al
e)

Guassian with Mean 0, Std. Dev. 1

Vector Length (log scale)
10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r (
lo

g
sc

al
e)

Uniform [0, 1]

Vector Length (log scale)

Re
la

tiv
e

Er
ro

r (
lo

g
sc

al
e)

Uniform [-10, 10]

100 101 102 103 104 105 106

Vector Length (log scale)
10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r (
lo

g
sc

al
e)

Uniform [0, 20]

100 101 102 103 104 105 106

Vector Length (log scale)

Re
la

tiv
e

Er
ro

r (
lo

g
sc

al
e)

Pure Random ±[-64, 64]

Float16
Float16sr

BFloat16
BFloat16sr

Float16 with Float32 accum.
Float16sr with Float32 accum.

BFloat16 with Float32 accum.
BFloat16sr with Float32 accum.

Figure 5.2: A comparison of relative errors when reducing precision from double to half-precision
using either RTN or SR for the dot product across different data distributions. We also consider
a mixed-precision case in which the intermediate sum is stored in single-precision. Each data
point represents the median over 50 runs, with shaded bands indicating the inter-quartile range.
For SR, each point is further averaged over 20 stochastic sub-runs.

General Matrix Multiply (GEMM) The choice of data initialization similarly
influences GEMM results (Figure 5.3, Figure 5.4). Unlike the dot product,
however, we do not observe a dramatic growth of error. This is largely due
to the relatively modest size of the constituent dot products. For instance,
the largest matrix considered is 2048× 2048, resulting in dot products of
length 2048, which, as we saw previously, do not produce significant error
accumulation. Likewise, when using higher-precision accumulators, the
differences between RTN and SR are negligible, with both rounding modes
producing nearly identical results. This finding suggests that stochastic
rounding’s advantages are most evident in computations with exceptionally

31

5.1. Dot Product

long accumulation sequences, rather than in the moderately-sized operations
typical of standard matrix computations.

Matrix Elements (log scale)
10 9

10 8

10 7

10 6

Re
la

tiv
e

Er
ro

r (
lo

g
sc

al
e)

Uniform [0, 0.001]

Matrix Elements (log scale)
Re

la
tiv

e
Er

ro
r (

lo
g

sc
al

e)

Guassian with Mean 0, Std. Dev. 1

Matrix Elements (log scale)
10 9

10 8

10 7

10 6

Re
la

tiv
e

Er
ro

r (
lo

g
sc

al
e)

Uniform [0, 1]

Matrix Elements (log scale)

Re
la

tiv
e

Er
ro

r (
lo

g
sc

al
e)

Uniform [-1000, 1000]

100 101 102 103

Matrix Elements (log scale)

10 9

10 8

10 7

10 6

Re
la

tiv
e

Er
ro

r (
lo

g
sc

al
e)

Uniform [200, 400]

100 101 102 103

Matrix Elements (log scale)

Re
la

tiv
e

Er
ro

r (
lo

g
sc

al
e)

Pure Random ±[1e-6, 1e6]

Float32 Float32sr Float32 with Float64 accum. Float32sr with Float64 accum.

Figure 5.3: A comparison of relative errors when reducing precision from double- to single-precision
using either RTN or SR for general matrix multiplication across different data distributions. We
also consider a mixed-precision case in which intermediate sums are stored in double-precision.
Each data point represents the median over twenty runs, with shaded bands indicating the
inter-quartile range. For SR, each point is further averaged over five stochastic sub-runs.

32

5.2. Case Study: Stochastic Rounding in ICON

Matrix Elements (log scale)
10 5

10 4

10 3

10 2

10 1

Re
la

tiv
e

Er
ro

r (
lo

g
sc

al
e)

Uniform [0, 0.01]

Matrix Elements (log scale)

Re
la

tiv
e

Er
ro

r (
lo

g
sc

al
e)

Gaussian with Mean 0, Std. Dev. 1

Matrix Elements (log scale)
10 5

10 4

10 3

10 2

10 1

Re
la

tiv
e

Er
ro

r (
lo

g
sc

al
e)

Uniform [0, 1]

Matrix Elements (log scale)

Re
la

tiv
e

Er
ro

r (
lo

g
sc

al
e)

Uniform [-10, 10]

100 101 102

Matrix Elements (log scale)

10 5

10 4

10 3

10 2

10 1

Re
la

tiv
e

Er
ro

r (
lo

g
sc

al
e)

Uniform [0, 20]

100 101 102

Matrix Elements (log scale)

Re
la

tiv
e

Er
ro

r (
lo

g
sc

al
e)

Pure Random ±[-64, 64]

Float16
Float16sr

BFloat16
BFloat16sr

Float16 with Float32 accum.
Float16sr with Float32 accum.

BFloat16 with Float32 accum.
BFloat16sr with Float32 accum.

Figure 5.4: A comparison of relative errors when reducing precision from double- to half-precision
using either RTN or SR for general matrix multiplication across different data distributions. We
also consider a mixed-precision case in which intermediate sums are stored in single-precision. Each
data point represents the median over 20 runs, with shaded bands indicating the inter-quartile
range. For SR, each point is further averaged over 5 stochastic sub-runs.

5.2 Case Study: Stochastic Rounding in ICON

ICON is a next-generation modeling framework jointly developed by the Max
Planck Institute for Meteorology (MPI-M) and the German Weather Service
(DWD). Designed for both weather prediction and climate research, ICON
employs a non-hydrostatic dynamical core on a quasi-uniform icosahedral
grid, which avoids polar singularities and provides high scalability across
modern high-performance computing systems. Its Earth System Model
(ICON-ESM) couples atmospheric, oceanic, land-surface, and biogeochemical
components to participate in CMIP6 experiments, offering robust climate

33

5.2. Case Study: Stochastic Rounding in ICON

simulations with performance and bias metrics comparable to established
models.

As a more challenging application, we applied stochastic rounding to ICON’s
velocity tendencies module which the SPCL team has carefully converted
into SDFG form and validated numerically against the original FORTRAN
implementation. This module is a particularly relevant test case because it sits
at the heart of ICON’s dynamical core, determining how momentum evolves
on the icosahedral grid. It combines a mixture of advection, pressure-gradient,
and corrective terms, each with distinct numerical sensitivities. From a
rounding perspective, this mixture is instructive: while advection terms
involve short-to-moderate length accumulations where SR might provide
some stability benefits, corrective terms and coefficient-based routines can
instead amplify noise if not carefully managed. As such, velocity tendencies
has the potential to highlight both the promise and the limitations of SR. It
would demonstrate that SR’s effectiveness depends not only on the presence
of long accumulation chains but also on the stability of the surrounding
numerical formulations.

Our results, summarized in Table 5.1, show that despite the inherent error
introduced when truncating double-precision values to single-precision, over-
all errors remain low across most variables, with the z-kin-hor-e-1 array
being the main outlier.

Further analysis suggests that SR’s lack of improvement here stems from the
characteristics of this component: it contains few long accumulation chains
(where SR typically excels) and includes potentially unstable routines, such
as the calculation of radial basis function coefficients. Similar to ECMWF’s
Legendre transformations, such numerically sensitive operations may be
better preserved in double-precision.

While SR did not outperform RTN in this case, its seamless integration into a
large, production-grade scientific application with minimal engineering effort
demonstrates the flexibility of DaCe and the robustness of our SR implemen-
tation. Equally important, these results help refine our understanding of
where SR offers the most benefit—pointing future efforts toward identifying
and selectively targeting those high-impact computational patterns.

34

5.2. Case Study: Stochastic Rounding in ICON

Array Method Mean Abs Error Median Abs Diff Q75 Max Abs Error Mean Rel Error

ddt vn apc pc SR 1.70× 10−10 1.16× 10−10 2.33× 10−10 2.79× 10−9 1.533× 10−2

RTN 1.45× 10−10 8.73× 10−11 2.33× 10−10 2.10× 10−9 5.815× 10−3

vn ie SR 7.71× 10−7 4.77× 10−7 9.54× 10−7 7.63× 10−6 8.475× 10−8

RTN 7.59× 10−7 4.77× 10−7 9.54× 10−7 3.81× 10−6 8.384× 10−8

vt SR 8.08× 10−7 4.77× 10−7 9.54× 10−7 7.63× 10−6 2.038× 10−2

RTN 7.56× 10−7 4.77× 10−7 9.54× 10−7 3.81× 10−6 2.368× 10−2

w concorr c SR 2.73× 10−15 4.44× 10−16 1.78× 10−15 2.27× 10−13 2.572× 10−3

RTN 2.39× 10−15 4.44× 10−16 1.78× 10−15 1.14× 10−13 1.952× 10−3

z kin hor e 1 SR 1.81× 10−5 7.63× 10−6 3.05× 10−5 3.05× 10−4 1.056× 10−7

RTN 1.65× 10−5 7.63× 10−6 3.05× 10−5 2.44× 10−4 9.640× 10−8

z w concorr me 1 SR 3.86× 10−15 4.44× 10−16 3.55× 10−15 6.82× 10−13 6.396× 10−3

RTN 3.51× 10−15 4.44× 10−16 1.78× 10−15 4.55× 10−13 1.458× 10−4

Table 5.1: Error statistic when running the ICON Velocity Tendencies module in single-precision
RTN and SR. The statistics are calculated by comparing single-precision output to the expected
double-precision output.

35

Chapter 6

Conclusion

As the push for low-precision GPU parallelism accelerates, it is crucial to
continue exploring ways to safely lower the precision of scientific applications.
Stochastic rounding is not a silver bullet but it is a valuable tool for improving
numerical stability in targeted situations.

This thesis also highlights the power of the DaCe and NPBench frameworks.
DaCe allowed us to apply SR to a large, complex Fortran codebase with
minimal engineering effort, while NPBench provided a versatile platform for
systematically evaluating both error and performance across a diverse set of
kernels. Together, they form a strong foundation for exploring and validating
future numerical techniques aimed at making low-precision computation
both practical and reliable.

Summary of Contributions. This thesis makes several key technical and
methodological contributions to evaluating and deploying stochastic round-
ing in scientific applications. We implement two new stochastic rounding
single- and half-precision data types within the DaCe framework, that sup-
port both CPU and GPU execution. We add a new DaCe pass that enable
the easy changing of SDFG types, unlocking the means for abstract tests
involving arbitrary types.

Through systematic analysis of random number generators, we demonstrated
that low-quality RNGs like Linear Congruential Generator achieve nearly
identical accuracy to high-quality alternatives while reducing computational
overhead from 54× to 8× compared to round-to-nearest arithmetic and how
recycling a buffer of high quality randoms results in too poor RNG for SR.

We extended the NPBench benchmark suite with dedicated error measure-
ment capabilities, enabling systematic comparison of floating-point compu-
tation schemes across diverse scientific kernels. Our experimental analysis
revealed that stochastic rounding’s effectiveness is highly data-dependent,

36

providing up to three orders of magnitude error reduction for workloads with
long accumulation chains and unidirectional value growth, while offering
minimal benefits for symmetric distributions.

Finally, we validated our approach on components of the ICON climate
model, demonstrating that complex Fortran applications can be transformed
to use stochastic rounding with minimal engineering effort, though results
highlight that SR benefits are application-specific rather than universal. These
contributions provide the scientific computing community with both the tools
and insights necessary to evaluate whether stochastic rounding can facilitate
the transition from double to single precision in their specific applications.

Limitations and Possible Extensions. Our research focused primarily on
enabling double-precision applications to run at single-precision, but the
benefits of stochastic rounding become more pronounced at lower precisions.
Since SR is most beneficial for long accumulations, and half-precision for-
mats require only short accumulations before error explodes, SR could offer
immediate accuracy benefits for applications transitioning to half-precision
or lower. Future work should systematically explore how SR can enhance
already low-precision applications and quantify the precision-accuracy trade-
offs across different formats.

Technical limitations in our experimental setup prevented comprehensive
evaluation of all desired precision formats. While DaCe has been extended to
support half-precision, the existing Float16 implementation on CPU is non-
functional, forcing us to rely on the StochasticRounding.jl package for some
experiments. This hybrid approach, while functional, is cumbersome and
limited our ability to run some experiements. Extending DaCe to robustly
support alternative low-precision formats such as BFloat16, MiniFloat, and
TensorFloat-32 would enable more comprehensive NPBench experiments and
better characterize SR’s impact across the full spectrum of reduced-precision
formats.

Our analysis of random number generators revealed unexpected results that
warrant further investigation. The circular buffer approach, despite using
high-quality Mersenne Twister values, showed acceptable performance but
weaker error reduction compared to simpler generators. We hypothesize this
may be due to pattern repetition in the 10,000-element buffer, but system-
atic exploration of different buffer sizes and cycling strategies is needed to
confirm this theory. Additionally, while our chosen lightweight RNGs (LCG
and Xorshift) proved effective, extending the analysis to more sophisticated
generators like the Permuted Congruential Generator could provide insights
into the relationship between RNG quality and SR effectiveness.

The ICON velocity tendencies results present an intriguing puzzle that merits
deeper investigation. The marginally worse performance compared to round-

37

to-nearest was unexpected given the theoretical advantages of SR. A detailed
analysis of the computational patterns within these modules could reveal why
SR fails to provide benefits in this context. Furthermore, exploring iterative
scenarios—where module outputs are fed back as inputs over multiple
time steps—could illuminate whether SR’s advantages emerge over longer
computational chains, potentially making it valuable for extended climate
simulations even when individual module executions show no improvement.

38

Bibliography

[1] Jeffrey M. Alben, Paulius Micikevicius, Hong Wu, and Michael Y. Siu.
Stochastic rounding of numerical values. https://patents.google.

com/patent/US10684824B2/en, 2019. US Patent US10684824B2, Status:
Active.

[2] R. C. M. Barnes, E. H. Cooke-Yarborough, and D. G. A. Thomas. An
electronic digital computor using cold cathode counting tubes for stor-
age. Electronic Engineering, 23:286–291, 1951. Archived by the Computer
Conservation Society.

[3] Tal Ben-Nun, Johannes de Fine Licht, Alexandros Nikolaos Ziogas,
Timo Schneider, and Torsten Hoefler. Stateful dataflow multigraphs: A
data-centric model for performance portability on heterogeneous archi-
tectures. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’19, 2019.

[4] Michael P. Connolly, Nicholas J. Higham, and Theo Mary. Stochastic
Rounding and Its Probabilistic Backward Error Analysis. SIAM Journal
on Scientific Computing, 43(1):A566–A585, January 2021.

[5] Matteo Croci, Massimiliano Fasi, Nicholas J. Higham, Theo Mary, and
Mantas Mikaitis. Stochastic rounding: implementation, error analysis
and applications. Royal Society Open Science, 9(3):211631, March 2022.

[6] Jack Dongarra, John Gunnels, Harun Bayraktar, Azzam Haidar, and
Dan Ernst. Hardware trends impacting floating-point computations in
scientific applications, 2024.

[7] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. Deep Learning with Limited Numerical Precision. 2015.

39

https://patents.google.com/patent/US10684824B2/en
https://patents.google.com/patent/US10684824B2/en

Bibliography

[8] Akash Haridas, Nagabhushana Rao Vadlamani, and Yuki Minamoto.
Deep neural networks to correct sub-precision errors in cfd. Applications
in Energy and Combustion Science, 12:100081, 2022.

[9] Sam Hatfield, Kristian Mogensen, Peter Düben, Nils Wedi, and Michail
Diamantakis. Operational Single-Precision Earth-System Modelling at
ECMWF. Conference presentation at EGU General Assembly 2021, 2021.
Accessed: 2025-08-03.

[10] J. H. Jungclaus, S. J. Lorenz, H. Schmidt, V. Brovkin, N. Brüggemann,
F. Chegini, T. Crüger, P. De-Vrese, V. Gayler, M. A. Giorgetta, O. Gut-
jahr, H. Haak, S. Hagemann, M. Hanke, T. Ilyina, P. Korn, J. Kröger,
L. Linardakis, C. Mehlmann, U. Mikolajewicz, W. A. Müller, J. E.
M. S. Nabel, D. Notz, H. Pohlmann, D. A. Putrasahan, T. Raddatz,
L. Ramme, R. Redler, C. H. Reick, T. Riddick, T. Sam, R. Schneck,
R. Schnur, M. Schupfner, J.-S. von Storch, F. Wachsmann, K.-H. Wieners,
F. Ziemen, B. Stevens, J. Marotzke, and M. Claussen. The icon earth
system model version 1.0. Journal of Advances in Modeling Earth Systems,
14(4):e2021MS002813, 2022. e2021MS002813 2021MS002813.

[11] Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar
Das, Kunal Banerjee, Sasikanth Avancha, Dharma Teja Vooturi, Nataraj
Jammalamadaka, Jianyu Huang, Hector Yuen, Jiyan Yang, Jongsoo
Park, Alexander Heinecke, Evangelos Georganas, Sudarshan Srini-
vasan, Abhisek Kundu, Misha Smelyanskiy, Bharat Kaul, and Pradeep
Dubey. A Study of BFLOAT16 for Deep Learning Training, June 2019.
arXiv:1905.12322 [cs].

[12] L. V. Kantorovich. Mathematical methods of organizing and planning
production. Management Science, 6(4):366–422, 1960.

[13] Milan Klöwer, Peter V. Coveney, E. Adam Paxton, and Tim N. Palmer.
Periodic orbits in chaotic dynamical systems simulated at low precision.
Scientific Reports, 13:11410, 2023.

[14] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436–444, May 2015.

[15] Gabriel H. Loh. Stochastic rounding logic. https://patents.google.

com/patent/US10628124B2/en, 2019. US Patent US10628124B2, Status:
Active.

[16] Edward N. Lorenz. Deterministic nonperiodic flow. Journal of the Atmo-
spheric Sciences, 20(2):130–141, 1963.

40

https://patents.google.com/patent/US10628124B2/en
https://patents.google.com/patent/US10628124B2/en

Bibliography

[17] Mantas Mikaitis. Stochastic Rounding: Algorithms and Hardware
Accelerator. In 2021 International Joint Conference on Neural Networks
(IJCNN), pages 1–6, Shenzhen, China, July 2021. IEEE.

[18] Franco Molteni and Fred Kucharski. A heuristic dynamical model of
the north atlantic oscillation with a lorenz-type chaotic attractor. Climate
Dynamics, 52(9):6173–6193, May 2019.

[19] Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Ilya Sutskever,
Lukasz Kaiser, Karol Kurach, and James Martens. Adding Gradient
Noise Improves Learning for Very Deep Networks, November 2015.
arXiv:1511.06807 [stat].

[20] Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary
Tatlock. Automatically improving accuracy for floating point expressions.
SIGPLAN Not., 50(6):1–11, June 2015.

[21] E. Adam Paxton, Matthew Chantry, Milan Klöwer, Leo Saffin, and Tim
Palmer. Climate Modeling in Low Precision: Effects of Both Deter-
ministic and Stochastic Rounding. Journal of Climate, 35(4):1215–1229,
February 2022.

[22] Yuki Uchino, Katsuhisa Ozaki, and Toshiyuki Imamura. Performance
Enhancement of the Ozaki Scheme on Integer Matrix Multiplication
Unit. The International Journal of High Performance Computing Applications,
39(3):462–476, May 2025. arXiv:2409.13313 [cs].

[23] Filip Váňa, Peter Düben, Simon Lang, Tim Palmer, Martin Leutbecher,
Deborah Salmond, and Glenn Carver. Single Precision in Weather
Forecasting Models: An Evaluation with the IFS. Monthly Weather
Review, 145(2):495–502, February 2017.

[24] J.H. Wilkinson. Rounding Errors in Algebraic Processes. Dover books on
advanced mathematics. Dover, 1994.

[25] Alexandros Nikolaos Ziogas, Tal Ben-Nun, Timo Schneider, and Torsten
Hoefler. NPBench: a benchmarking suite for high-performance NumPy.
In Proceedings of the ACM International Conference on Supercomputing,
pages 63–74, Virtual Event USA, June 2021. ACM.

41

Declaration of originality

The signed declaration of originality is a component of every written paper or thesis authored during the
course of studies. In consultation with the supervisor, one of the following two options must be selected:

☐ I hereby declare that I authored the work in question independently, i.e. that no one helped me to
author it. Suggestions from the supervisor regarding language and content are excepted. I used no
generative artificial intelligence technologies1.

☐ I hereby declare that I authored the work in question independently. In doing so I only used the
authorised aids, which included suggestions from the supervisor regarding language and content and
generative artificial intelligence technologies. The use of the latter and the respective source
declarations proceeded in consultation with the supervisor.

Title of paper or thesis:

Authored by:
If the work was compiled in a group, the names of all authors are required.

Last name(s): First name(s):

With my signature I confirm the following:
− I have adhered to the rules set out in the Citation Guidelines.
− I have documented all methods, data and processes truthfully and fully.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for originality.

Place, date Signature(s)

 If the work was compiled in a group, the names of all authors
are required. Through their signatures they vouch jointly for the
entire content of the written work.

1 For further information please consult the ETH Zurich websites, e.g. https://ethz.ch/en/the-eth-
zurich/education/ai-in-education.html and https://library.ethz.ch/en/researching-and-publishing/scientific-writing-at-
eth-zurich.html (subject to change).

Towards Stochastic Rounding for Scientific Applications

Creavin Thomas

Zollikon, 15 August 2025

	Contents
	Introduction
	Background
	A Note on Floating-Point Formats
	Rounding Modes and Round-off Error
	Stochastic Rounding

	State of the Art
	Transitioning to Single-Precision
	Scientific Applications of Stochastic Rounding

	Testing Stochastic Rounding: Go Broad & Fail Fast
	Stochastic Rounding in DaCe
	Implementation Validation

	Easier Evaluation of Schemes: SR in NPBench
	Performance
	Rounding Error

	Results
	Dot Product
	Case Study: Stochastic Rounding in ICON

	Conclusion
	Bibliography

