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Overview

     “Everything old is new again.”

                               — Proverb

2U.S. National Archives



- Modern hardware increasingly 
relies on lower-precision 
floating-point arithmetic

- Challenge for traditional 
double-precision climate 
simulations

       

Problem
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- Integrated Stochastic Rounding (SR) into DaCe framework

- Extended NPBench for error measurement

- Analyzed RNG performance to balance speed & accuracy

- Enabled automated SR transformation with minimal developer effort

       

Our Approach

4



- Replicated literature results + expanded to various kernels & ICON model

- Demonstrated significant SR benefit  for long accumulation chains & 
stagnation-prone simulations

- Demonstrated marginal benefits for ICON & similar kernels

       

Key Results
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Background

• Floating-point formats

• Rounding Modes

• Stochastic rounding

6Call of Duty: Black Ops



Floating-point Formats

7



Floating-point Formats
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Floating-point Formats
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IEEE 754 Rounding Modes
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1. Round to Nearest

- Ties to Even – Nearest value; ties go to even digit (default for binary FP)

- Ties Away from Zero – Nearest value; ties go away from zero

2. Directed Roundings

- Toward 0 – Truncate toward zero

- Toward +∞ – Round up (ceiling)

- Toward −∞ – Round down (floor)



Stochastic Rounding
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Why Is This Beneficial?
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- Consider FP16

- The real numbers 10,000 ≤ x＜10,025 can only be 
represented by:

10000, 10008, 10016, 10024

- With RTN, 10,003 + 0.99 always results in 10,000

- With SR, ~50% 10,000, ~50% 10,008

- Expected value is ~10,004

Half Precision (FP16) Spec



Applications of Stochastic Rounding
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- Primarily used in machine learning to perform training and inference at low 
precision (≤ 16bits)

- Survey paper mentions use in:

- Numerical linear algebra

- Numerical verification software e.g CADNA

- ODE and PDE solvers

- Quantum computing

- Digital signal processing



Why Is It Not More Widely Applied?
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- Not available in hardware

- Except in limited research and IPU chips

- Patents by NVIDIA, AMD, IBM

- Software emulation costs 5× to 10× more 
computer

- Largest cost is random number generation

graphcore.ai; intel.com; spinnaker2.gitlab.io



Why Are We Interested in Stochastic Rounding?
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- Recent studies show that numerical precision can be reduced while still preserving 
accuracy

- Theoretical speedups: 2× to 4× higher throughput when precision is halved, 
quartered etc

- Practical motivation: Transitioning from double-precision CPU computations to 
accelerators (e.g., GPUs/TPUs) with vastly more single-precision ALUs



State of the Art for Reducing Precision

• Transitioning to Single-precision

• Scientific Applications of Stochastic 
Rounding

16imgflip.com



Transitioning to Single-precision: ECMWF Case Study
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- ECMWF successfully moved Integrated Forecasting System (IFS) from double to 
single precision while preserving accuracy.

- Transition took ~4 years, from initial research to operational single-precision 
forecasts.

- ~40% runtime reduction without losing forecast quality.

- Precision can be easily changed with FORTRAN KIND parameter 

- Significant additional effort needed for accurate results



Transitioning to Single-precision: ECMWF Case Study
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- Remove hard-coded constants (e.g., 10.E+100 → huge(x))

- Adapt linear algebra & MPI interfaces

- Modify I/O for binary data precision

- Adjusted radiation scheme time-stepping

- Legendre transforms kept in double-precision

- Precompute operators in double then truncate to single



Summation of the Harmonic Series
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Lorenz Simulation
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Lorenz Simulation
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Shallow Water Simulation

22Paxton et Al.



Heat Diffusion in a Soil Column

23Paxton et Al.



Implementation

• Stochastic Rounding in DaCe

• DaCe Type Change Pass

• Error Benchmarking in NPBench

24imgflip.com



Bringing Stochastic Rounding to DaCe
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- Stochastic rounding works on toy problems

- Literature begs the question, what about complex 
simulations?

- SPCL is collaborating with MPI-M to bring DaCe to the 
ICON Climate Model

- Can we add SR to DaCe to perform ICON procedures at 
low precision with little increase in error in shorter time? 



Goals
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- Must be performant and easy to use

- Replicate existing experiments in DaCe

- Benchmark the performance and error

- Apply stochastic rounding to an ICON procedure

“We choose to [add 
stochastic rounding] 
not because it is easy 
but because it is hard”
                        — JFK

wikipedia.org



Implementation in DaCe
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- Introduced two new types: 

dace::float32sr

dace::float16sr

- Added CUDA support for the new types

- Surprisingly, no feature parity with single and half precision

- Unit tests for operation behaviour and statistical properties

github.com/spcl/dace



Typical Stochastic Rounding Implementation
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- SR(2.3) to the nearest integer: generate a random value 
[0, 1.0), add it to 2.3, truncate the decimal part

Interstellar (2014)



Deviations From The Typical Stochastic Rounding Implementation
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- Difference: consume random values from a 
large circular array populated at initialization

- Alternative ideas
- A queue of rands populated by a 

background thread 
- Random rounding 
- Using input as a source of randomness

Interstellar (2014)



DaCe Stochastic Rounding Performance
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- From literature, we should expect a ~5× performance hit 

- We leverage NPBench to measure the performance and to check 
compatibility with Python/Numpy language features

- Add a NPBench test suite for measuring error

- Initial tests showed > 10× performance hit

- > 50% of the cost was incurred by the RNG

- We would like to improve upon that

github.com/spcl/npbench



NPBench Performance
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NPBench Performance
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NPBench Performance
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Type Change DaCe Pass
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- Previously we applied SR types manually

- Not sustainable for large SDFGs like VT

- Created a DaCe Pass to swap arbitrary simple 
data types

imgflip.com



Experiments

• Dot Product

• GEMM

• ICON

35Breaking Bad (2008)



Dot Product
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Dot Product
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General Matrix Multiply (GEMM)
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General Matrix Multiply (GEMM)
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Integration with ICON
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- SPCL has been working to bring DaCe to ICON

- github.com/spcl/icon-artifacts contains full 
SDFGs of ICON dynamical core procedures

- Of interest is the Velocity Tendencies procedure

- Large example that validates and spans many DaCe 
features

icon-model.org

http://github.com/spcl/icon-artifacts


Integration with Velocity Tendencies Procedure 
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- Ran and validated VT with double precision

- Created an updated validation script to measure error on 
an element by element basis

- Ran VT at single precision with RTN and SR  

- We would like FP32SR to produce results much 
closer to FP64 than what FP32 can produce



ICON Velocity Tendencies
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Conclusion

• Contributions

• Future Work
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Contributions
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- New DaCe Pass for modifying SDFG types

- New reasonably performant SR data type for DaCe

- Complete with unit and integration tests

- NPBench suite for benchmarking SR performance and error

- Initial investigation showing limitation of SR for complex simulations



Future Work: Precision & Tools
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- Explore SR benefits in half-precision and lower formats in greater detail

- SR could offer immediate accuracy benefits for applications transitioning to 
half-precision or lower

- In particular FP16, BFloat16, MiniFloat, TensorFloat-32

- Extend DaCe to fully support low-precision formats to avoid hybrid setups



Future Work: SR Behavior & Applications
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- Test different RNG buffer sizes and cycling strategies

- Investigate why buffering performs so poorly

- Evaluate advanced RNGs such as Permuted Congruential Generator for SR 
effectiveness

- Investigate why SR underperforms in ICON velocity tendencies

- Run over a greater time horizon or loop it

- Experiment with additional ICON modules


