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“Everything old is new again.”

— Proverb
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Problem

Specification GB200 GH?200 - Modern hardware increasingly
FP64 30 TFLOPS 34 TFLOPS relies on lower-precision

FP64 Tensor Core 80 TFLOPS 67 TELOPS ﬂoating_point arith metiC

FP32 160 TFLOPS 67 TFLOPS

TE32 Tensor Core 2.5 PFLOPS 494 TFLOPS Chall for traditi |
FP16/BF16 Tensor Core 5 PFLOPS 990 TFLOPS - alienge for traditiona

FP8 Tensor Core 10 PFLOPS 990 TFLOPS double-precision climate

INT8 Tensor Core 10 POPS 1,979 TOPS . :

FP4 Tensor Core 20 PFLOPS _ simulations

Table 1.1: NVIDIA GB200 and GH200 specifications showing the increased performance of
low-precision floats and in particular that of the low precision tensor cores.
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Our Approach

Integrated Stochastic Rounding (SR) into DaCe framework

Extended NPBench for error measurement

Analyzed RNG performance to balance speed & accuracy

Enabled automated SR transformation with minimal developer effort

ETH:zirich



Key Results

- Replicated literature results + expanded to various kernels & ICON model

- Demonstrated significant SR benefit for long accumulation chains &
stagnation-prone simulations

- Demonstrated marginal benefits for ICON & similar kernels
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Background

» Floating-point formats
 Rounding Modes

« Stochastic rounding

N
The numbersiMason§what{do they mean?"
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Floating-point Formats

18y =8 1431 = 273 2534 2" = T,

1
3125 =241 == 9t .90 95 _ 11001

3.12510 = 1.562519 x 2! = 1.1001, x 2!
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Floating-point Formats

Precision Format Sign bit Significand bits Exponent bits
Double  Floating-point 64 1 52 ik
Single  Floating-point 32 1 23 8

Half Floating-point 16 i 10 D

Table 2.1: I[EEE 754 Floating-Point Number Representations
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Floating-point Formats

Precision Format Sign bit Significand bits Exponent bits
BFloatl6  Brain Floating-point 16 1 7 8
TE32 TensorFloat-32 1 10 8
Mini Float  Mini Floating-point 8 1 4 3
BEFP16 Block Floating Point 16 ] 15 8 (shared)

Table 2.2: Alternative Floating-Point Number Representations
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IEEE 754 Rounding Modes

1. Round to Nearest

- Ties to Even — Nearest value; ties go to even digit (default for binary FP)

- Ties Away from Zero — Nearest value; ties go away from zero

2. Directed Roundings

- Toward 0 — Truncate toward zero
- Toward ++« — Round up (ceiling)

- Toward =~ — Round down (floor)

ETH:zirich
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Stochastic Rounding

x|, with probability p(x),
x|, with probability 1 — p(x)
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Why Is This Beneficial?

- Consider FP16
- The real numbers 10,000 < x<10,025 can only be Half Precision (FP16) Spec
represented by:
Sign Exponent (5 bits) Fraction (10 bits)
10000, 10008, 10016, 10024 el [1 ' 1]

15 14 10 9 0

- With RTN, 10,003 + 0.99 always results in 10,000
- With SR, ~50% 10,000, ~50% 10,008

- Expected value is ~10,004
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Applications of Stochastic Rounding

- Primarily used in machine learning to perform training and inference at low
precision (< 16bits)

- Survey paper mentions use in:
- Numerical linear algebra
- Numerical verification software e.g CADNA
- ODE and PDE solvers
- Quantum computing

- Digital signal processing

ETH:zirich
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Why Is It Not More Widely Applied?

- Not available in hardware
- Except in limited research and IPU chips

- Patents by NVIDIA, AMD, IBM

- Software emulation costs 5% to 10x more
computer

- Largest cost is random number generation

ETH:zirich
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Why Are We Interested in Stochastic Rounding?

- Recent studies show that numerical precision can be reduced while still preserving
accuracy

- Theoretical speedups: 2x to 4x higher throughput when precision is halved,
quartered etc

- Practical motivation: Transitioning from double-precision CPU computations to
accelerators (e.g., GPUs/TPUs) with vastly more single-precision ALUs

ETH:zirich
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State of the Art for Reducing Precision

Double
Precision
« Transitioning to Single-precision
« Scientific Applications of Stochastic
Rounding
Single
Precision
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Transitioning to Single-precision: ECMWF Case Study

- ECMWEF successfully moved Integrated Forecasting System (IFS) from double to
single precision while preserving accuracy.

- Transition took ~4 years, from initial research to operational single-precision
forecasts.

- ~40% runtime reduction without losing forecast quality.
- Precision can be easily changed with FORTRAN KIND parameter

- Significant additional effort needed for accurate results

ETH:zirich
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Transitioning to Single-precision: ECMWF Case Study

- Remove hard-coded constants (e.g., 10.E+100 — huge(x))
- Adapt linear algebra & MPI interfaces

- Modify I/O for binary data precision

- Adjusted radiation scheme time-stepping

- Legendre transforms kept in double-precision

- Precompute operators in double then truncate to single

ETH:zirich
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Summation of the Harmonic Series

Format Sum at i = 5 x 106 Error at i = 5 x 106
FP64 16.002 0
FP32 15.404 0.598
FP16 7.086 8.916
BFloat16 5.063 10.94
s16.15 RTN 11.938 4.064
00 1 1 1 1 s16.15 RD 10.553 5.449
anl n 1 —|_ 2 —|_ 3 _I_ 4 —|_ s8.7 RTN 6.414 0.588
s8.7 RD 5.039 10.963
g16.15 'SR 16.002 (s.d. 0.012) —1.4 5 10—
ER32 SR 16.002 (s.d. 8 x 10_4) —3.5x 10~°
s8.7 SR 11.205 (s.d. 0.242) 4.797
FP16 SR 11.638 (s.d. 0.012) 4.364
BFloat16 SR 15.355 (s.d. 0.639) 0.647
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Lorenz Simulation

- Float64 RTN - Float32 RTN Float32 SR
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Figure 3.1: Our simulation of the Lorenz system at different floating-point precisions. Brighter
colors indicate higher point density. Orbits are plotted on a 200 x 200 pixel grid, except for
Float16 RTN, which is plotted on a 25 x 25 grid for legibility.
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Lorenz Simulation

Float32 RTN Float32 SR
Float64 RTN RMSE: 5.7414 RMSE: 5.5548
30 30 30
' o 10°
106
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10! g
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Floatl6 RTN Floatl6 SR 0 £
20 RMSE: 176.9032 20 RMSE: 7.7557 [
B o —101_§
-10%
—106
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-30 . ; : ; : ;
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Figure 3.2: Root mean squared error (RMSE) of the pixel-wise differences between Lorenz system
simulations across different floating-point formats.
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Shallow Water Simulation
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Figure 3.3: The shallow water model integrated at different precision levels by Paxton. A
snapshot of the flow speed (m s_l), initiated from the same initial condition, after 50 days.

Paxton et Al.
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Heat Diffusion in a Soil Column
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Figure 3.4: Heat diffusion in a soil column with different number formats and rounding modes
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Implementation

ETH:zirich

« Stochastic Rounding in DaCe

DaCe Type Change Pass

Error Benchmarking in NPBench

imgflip.com
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Bringing Stochastic Rounding to DaCe

- Stochastic rounding works on toy problems

- Literature begs the question, what about complex
simulations?

- SPCL is collaborating with MPI-M to bring DaCe to the
ICON Climate Model

- Can we add SR to DaCe to perform ICON procedures at
low precision with little increase in error in shorter time?

ETH:zirich
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Goals

Must be performant and easy to use

Replicate existing experiments in DaCe

Benchmark the performance and error

Apply stochastic rounding to an ICON procedure

ETH:zirich

“‘We choose to [add
stochastic rounding]
not because it is easy

but because it is hard”
— JFK

wikipedia.org
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Implementation in DaCe

- Introduced two new types:
dace::float32sr
dace::floatlosr

- Added CUDA support for the new types

- Surprisingly, no feature parity with single and half precision

- Unit tests for operation behaviour and statistical properties

E'HZUI’ICh github.com/spcl/dace 27



Typical Stochastic Rounding Implementation

Algorithm 1 Stochastic Rounding by Perturbation and Truncation
function STOCHASTICROUND(double)

rand <— RNG32()
mask + (1 € 29) —1 > Mask bits lost to rounding

i
2
3
4 rand < rand & mask

5: double < double + rand > Perturb bits lost to rounding
6 double < double & ~ mask > Truncate surplus bits
7 return FloatCast(double)

8:

end function

- SR(2.3) to the nearest integer: generate a random value
[0, 1.0), add it to 2.3, truncate the decimal part

ETH:urich Interstellar (2014)
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Deviations From The Typical Stochastic Rounding Implementation

- Difference: consume random values from a
large circular array populated at initialization

EIENEHATINE A RAND
- Alternative ideas
- A queue of rands populated by a é. 3
background thread | ‘
- Random rounding
- Using input as a source of randomness THIS lIT,MnMANEIWER

IS GONNA@(IST US_2X RUNTIME

ETH:zirich
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DaCe Stochastic Rounding Performance

- From literature, we should expect a ~5x performance hit

- We leverage NPBench to measure the performance and to check
compatibility with Python/Numpy language features

- Add a NPBench test suite for measuring error

- Initial tests showed > 10x performance hit

- > 50% of the cost was incurred by the RNG

- We would like to improve upon that

E'HZUI’ICh github.com/spcl/npbench 30



NPBench Performance

2mm
3mm
atax
cholesky
correlat
covarian
fdtd_2d
gemm
heat3d
jacobild
jacobi2d

Benchmarks
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NPBench Performance
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Total

2mm
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cholesky ‘
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covarian
fdtd_2d
gemm
heat3d F
jacobild
jacobi2d
ludcmp
mvt
seidel2d
symm
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syrk
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NPBench Performance
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Type Change DaCe Pass

- Previously we applied SR types manually

ATRADE OFFERA

- Not sustainable for large SDFGs like VT

I receive: you receive:

SDFG with FP64 SDFG with FP32SR . .
4 \ - Created a DaCe Pass to swap arbitrary simple

data types

E'H Z U r I C h imgflip.com 34



Experiments

Z YEA\II! SCIENCE!

Dot Product
« GEMM
e |[CON
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Dot Product
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Dot Product
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General Matrix Multiply (GEMM)
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General Matrix Multiply (GEMM)
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Integration with ICON

- SPCL has been working to bring DaCe to ICON

- github.com/spcl/icon-artifacts contains full
SDFGs of ICON dynamical core procedures

- Of interest is the Velocity Tendencies procedure

- Large example that validates and spans many DaCe
features

E'HZUI’ICh icon-model.org 40
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Integration with Velocity Tendencies Procedure

- Ran and validated VT with double precision

- Created an updated validation script to measure error on
an element by element basis

- Ran VT at single precision with RTN and SR

- We would like FP32SR to produce results much
closer to FP64 than what FP32 can produce

ETH:zirich
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ICON Velocity Tendencies

Array Method Mean Abs Error Median Abs Diff Q75 Max Abs Error Mean Rel Error
ddt_vn_apc_pc SR 1.705¢ 107 1.16 x 1012 233 %1019 279102 1.533'x 102
RTN 1.45 x 10—10 8.73 x 10— 11 2.33 x 1010 2.10 x 10— 5.815 x 103
vn_ie SR 7.71 x 10~7 4.77 x 10~7 9.54 x 10~7 7.63 x 10~ 8.475 x 10~8
RTN 7.59 x 107 4.77 x 10~7 9.54 x 10~7 3.81 x 10— 8.384 x 108
vt SR 8.08 x 10~7 4.77 x 10~7 9.54 x 10~7 7.63 x 1070 2.038 x 10~2
RTN 7.56 x 10~ 4.77 x 10~7 9.54 x 10~7 3.81 x 10~ 2.368 x 10~2
W _CONCOIT_C SR 2.73 x 10715 4.44 x 10716 1.78 x 10~15 227 x 10713 2572 x 10~3
RTN 2.39 x 10715 4.44 x 1016 1.78 x 10~ 15 1.14 x 10713 1.952 x 103
z kin_hor_e_1 SR 1.81 x 10~° 7.63 x 10~° 3.05 x 10> 3.05 x 1074 1.056 x 10~7
RTN 1.65 x 10~° 7.63 x 10~° 3.05 x 10~° 2.44 x 104 9.640 x 10~8
z_w_concorr.me_1 SR 3.86 x 1015 4.44 x 1016 3.55 x 10~ 1° 6.82 x 1013 6.396 x 103
RTN 3.51 x 10715 4.44 x 1016 1.78 x 10~ 1° 455 x 1013 1.458 x 104
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Conclusion

IT'S DONE
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e Contributions

 Future Work
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Contributions

- New DaCe Pass for modifying SDFG types
- New reasonably performant SR data type for DaCe
- Complete with unit and integration tests
- NPBench suite for benchmarking SR performance and error

- Initial investigation showing limitation of SR for complex simulations

ETH:zirich
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Future Work: Precision & Tools

- Explore SR benefits in half-precision and lower formats in greater detail

- SR could offer immediate accuracy benefits for applications transitioning to
half-precision or lower

- In particular FP16, BFloat16, MiniFloat, TensorFloat-32

- Extend DaCe to fully support low-precision formats to avoid hybrid setups

ETH:zirich
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Future Work: SR Behavior & Applications

Test different RNG buffer sizes and cycling strategies
- Investigate why buffering performs so poorly

- Evaluate advanced RNGs such as Permuted Congruential Generator for SR
effectiveness

- Investigate why SR underperforms in ICON velocity tendencies
- Run over a greater time horizon or loop it

- Experiment with additional ICON modules

ETH:zirich
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