
Towards Stochastic Rounding for Scientific
Applications

Thomas Creavin
MSc Thesis Student

Dr. Alexandru Calotoiu Prof. Dr. Torsten Hoefler
Advisor Advisor

11 September 2025

Overview

 “Everything old is new again.”

 — Proverb

2U.S. National Archives

- Modern hardware increasingly
relies on lower-precision
floating-point arithmetic

- Challenge for traditional
double-precision climate
simulations

Problem

3

- Integrated Stochastic Rounding (SR) into DaCe framework

- Extended NPBench for error measurement

- Analyzed RNG performance to balance speed & accuracy

- Enabled automated SR transformation with minimal developer effort

Our Approach

4

- Replicated literature results + expanded to various kernels & ICON model

- Demonstrated significant SR benefit for long accumulation chains &
stagnation-prone simulations

- Demonstrated marginal benefits for ICON & similar kernels

Key Results

5

Background

• Floating-point formats

• Rounding Modes

• Stochastic rounding

6Call of Duty: Black Ops

Floating-point Formats

7

Floating-point Formats

8

Floating-point Formats

9

IEEE 754 Rounding Modes

10

1. Round to Nearest

- Ties to Even – Nearest value; ties go to even digit (default for binary FP)

- Ties Away from Zero – Nearest value; ties go away from zero

2. Directed Roundings

- Toward 0 – Truncate toward zero

- Toward +∞ – Round up (ceiling)

- Toward −∞ – Round down (floor)

Stochastic Rounding

11

Why Is This Beneficial?

12

- Consider FP16

- The real numbers 10,000 ≤ x＜10,025 can only be
represented by:

10000, 10008, 10016, 10024

- With RTN, 10,003 + 0.99 always results in 10,000

- With SR, ~50% 10,000, ~50% 10,008

- Expected value is ~10,004

Half Precision (FP16) Spec

Applications of Stochastic Rounding

13

- Primarily used in machine learning to perform training and inference at low
precision (≤ 16bits)

- Survey paper mentions use in:

- Numerical linear algebra

- Numerical verification software e.g CADNA

- ODE and PDE solvers

- Quantum computing

- Digital signal processing

Why Is It Not More Widely Applied?

14

- Not available in hardware

- Except in limited research and IPU chips

- Patents by NVIDIA, AMD, IBM

- Software emulation costs 5× to 10× more
computer

- Largest cost is random number generation

graphcore.ai; intel.com; spinnaker2.gitlab.io

Why Are We Interested in Stochastic Rounding?

15

- Recent studies show that numerical precision can be reduced while still preserving
accuracy

- Theoretical speedups: 2× to 4× higher throughput when precision is halved,
quartered etc

- Practical motivation: Transitioning from double-precision CPU computations to
accelerators (e.g., GPUs/TPUs) with vastly more single-precision ALUs

State of the Art for Reducing Precision

• Transitioning to Single-precision

• Scientific Applications of Stochastic
Rounding

16imgflip.com

Transitioning to Single-precision: ECMWF Case Study

17

- ECMWF successfully moved Integrated Forecasting System (IFS) from double to
single precision while preserving accuracy.

- Transition took ~4 years, from initial research to operational single-precision
forecasts.

- ~40% runtime reduction without losing forecast quality.

- Precision can be easily changed with FORTRAN KIND parameter

- Significant additional effort needed for accurate results

Transitioning to Single-precision: ECMWF Case Study

18

- Remove hard-coded constants (e.g., 10.E+100 → huge(x))

- Adapt linear algebra & MPI interfaces

- Modify I/O for binary data precision

- Adjusted radiation scheme time-stepping

- Legendre transforms kept in double-precision

- Precompute operators in double then truncate to single

Summation of the Harmonic Series

19

Lorenz Simulation

20

Lorenz Simulation

21

Shallow Water Simulation

22Paxton et Al.

Heat Diffusion in a Soil Column

23Paxton et Al.

Implementation

• Stochastic Rounding in DaCe

• DaCe Type Change Pass

• Error Benchmarking in NPBench

24imgflip.com

Bringing Stochastic Rounding to DaCe

25

- Stochastic rounding works on toy problems

- Literature begs the question, what about complex
simulations?

- SPCL is collaborating with MPI-M to bring DaCe to the
ICON Climate Model

- Can we add SR to DaCe to perform ICON procedures at
low precision with little increase in error in shorter time?

Goals

26

- Must be performant and easy to use

- Replicate existing experiments in DaCe

- Benchmark the performance and error

- Apply stochastic rounding to an ICON procedure

“We choose to [add
stochastic rounding]
not because it is easy
but because it is hard”
 — JFK

wikipedia.org

Implementation in DaCe

27

- Introduced two new types:

dace::float32sr

dace::float16sr

- Added CUDA support for the new types

- Surprisingly, no feature parity with single and half precision

- Unit tests for operation behaviour and statistical properties

github.com/spcl/dace

Typical Stochastic Rounding Implementation

28

- SR(2.3) to the nearest integer: generate a random value
[0, 1.0), add it to 2.3, truncate the decimal part

Interstellar (2014)

Deviations From The Typical Stochastic Rounding Implementation

29

- Difference: consume random values from a
large circular array populated at initialization

- Alternative ideas
- A queue of rands populated by a

background thread
- Random rounding
- Using input as a source of randomness

Interstellar (2014)

DaCe Stochastic Rounding Performance

30

- From literature, we should expect a ~5× performance hit

- We leverage NPBench to measure the performance and to check
compatibility with Python/Numpy language features

- Add a NPBench test suite for measuring error

- Initial tests showed > 10× performance hit

- > 50% of the cost was incurred by the RNG

- We would like to improve upon that

github.com/spcl/npbench

NPBench Performance

31

NPBench Performance

32

NPBench Performance

33

Type Change DaCe Pass

34

- Previously we applied SR types manually

- Not sustainable for large SDFGs like VT

- Created a DaCe Pass to swap arbitrary simple
data types

imgflip.com

Experiments

• Dot Product

• GEMM

• ICON

35Breaking Bad (2008)

Dot Product

36

Dot Product

37

General Matrix Multiply (GEMM)

38

General Matrix Multiply (GEMM)

39

Integration with ICON

40

- SPCL has been working to bring DaCe to ICON

- github.com/spcl/icon-artifacts contains full
SDFGs of ICON dynamical core procedures

- Of interest is the Velocity Tendencies procedure

- Large example that validates and spans many DaCe
features

icon-model.org

http://github.com/spcl/icon-artifacts

Integration with Velocity Tendencies Procedure

41

- Ran and validated VT with double precision

- Created an updated validation script to measure error on
an element by element basis

- Ran VT at single precision with RTN and SR

- We would like FP32SR to produce results much
closer to FP64 than what FP32 can produce

ICON Velocity Tendencies

42

Conclusion

• Contributions

• Future Work

43imgflip.com

Contributions

44

- New DaCe Pass for modifying SDFG types

- New reasonably performant SR data type for DaCe

- Complete with unit and integration tests

- NPBench suite for benchmarking SR performance and error

- Initial investigation showing limitation of SR for complex simulations

Future Work: Precision & Tools

45

- Explore SR benefits in half-precision and lower formats in greater detail

- SR could offer immediate accuracy benefits for applications transitioning to
half-precision or lower

- In particular FP16, BFloat16, MiniFloat, TensorFloat-32

- Extend DaCe to fully support low-precision formats to avoid hybrid setups

Future Work: SR Behavior & Applications

46

- Test different RNG buffer sizes and cycling strategies

- Investigate why buffering performs so poorly

- Evaluate advanced RNGs such as Permuted Congruential Generator for SR
effectiveness

- Investigate why SR underperforms in ICON velocity tendencies

- Run over a greater time horizon or loop it

- Experiment with additional ICON modules

