
Final Year Project

Quick Roster: A Volunteer
Scheduling System

Thomas Creavin

Student ID: 17311103

A thesis submitted in part fulfilment of the degree of

BSc. (Hons.) in Computer Science

Supervisor: Dr. Deepak Ajwani

UCD School of Computer Science
University College Dublin

August 3, 2022

Table of Contents

1 Project Specification . 4

1.1 Core requirements . 4

1.2 Advanced requirements . 4

2 Introduction . 5

3 Related Work and Ideas . 6

3.1 Volunteer Rostering Applications . 6

3.2 Scheduling Applications . 7

3.3 Nurse Scheduling Problem . 8

3.4 Machine Learning Combinatorial Optimization 10

3.5 Serverless Applications . 12

3.6 Summary . 13

4 Mixed-Integer Programming Formulation of the NSP 14

4.1 Overview . 14

4.2 Mixed Integer Programming Formulation . 14

5 Data Considerations . 17

5.1 Overview . 17

5.2 Schedule Generation . 17

5.3 Scheduling Benchmarks . 18

5.4 User Volunteered Schedules . 18

6 Methodology and Implementation Details . 19

6.1 Nurse Scheduling Problem Solver . 19

6.2 Back end . 19

6.3 Front end . 23

6.4 Data Preparation . 24

6.5 Machine Learning . 26

7 Evaluation . 33

Page 1 of 54

7.1 MIP Formulation of the NSP Algorithm Evaluation 33

7.2 Supervised Search Space Pruning Model Evaluation 33

8 Conclusions and Future Work . 37

8.1 Conclusion . 37

8.2 Future Work . 37

9 Appendix . 44

9.1 Link to the GitLab Repository . 44

9.2 Full Feature Set . 44

9.3 Supplementary Figures . 46

9.4 Project Workplan . 52

Page 2 of 54

Abstract

Volunteering is widely practiced in Ireland. Most volunteering campaigns involve some degree of
scheduling to organise personnel. For small events, the scheduling can be as simple as everyone
agreeing to show up to the fundraiser at noon. However, more sophisticated scheduling is needed
for large events, conferences, multi-day fundraisers, etc. Half of all volunteering in Ireland is work
carried out directly by individual groups rather than through organisations. These volunteers are
unlikely to have access to bespoke scheduling tools.

This project addresses the need for a straightforward and scalable volunteering application that
caters to the scheduling constraints faced by volunteering groups and organisations in Ireland by
creating a severless web application for rostering volunteers. The application uses a mathematical
formulation capable of rostering volunteers for a wide range of scenarios and is implemented in a
state-of-the-art mathematical programming solver. The solver is optimized by preprocessing the
data with a supervised search space pruning model. The optimized solver reduces the average
solve time by almost 50% without noticeably affecting the solution quality. The time reduction
can be as great as 92% – reducing the solve time of a complex schedule from 13 hours to just 1
hour. This enables the application to solve even the most challenging problems in a reasonable
time frame.

Page 3 of 54

Chapter 1: Project Specification

Scheduling volunteers is a difficult task as there is a lack of straightforward applications that
address the real-world scheduling needs of volunteer organisations. Typical scheduling systems
such as Timecounts1, When I Work2, and OptaPlanner3 require a non-trivial amount of setup and
are designed to handle simple scheduling scenarios.

Scheduling volunteers introduces a new set of constraints [1] that are not considered by general
scheduling algorithms. A competent volunteer scheduling algorithm should be capable of accom-
modating volunteers’ varied availability; be able to schedule volunteers across concurrent shifts,
and allow volunteers to do multiple shifts of various lengths per day. Additionally, a scheduling sys-
tem for volunteers should be capable of quickly creating schedules for a large number of volunteers
with minimal setup.

The goal of this project is twofold: to develop a scheduling algorithm that caters to the needs
of volunteer organisations and to create an application that can utilise this algorithm to generate
rosters.

Metaheuristic algorithms are predominantly employed to optimize this class of scheduling problem.
In contrast to typical approaches, this project will use mathematical programming and will lever-
age modern machine learning techniques such as supervised search space pruning [2] to create a
novel volunteer scheduling algorithm. Initially, mixed-integer techniques will be explored before
experimenting with machine learning frameworks.

The machine learning model will be trained and evaluated using an artificial data set and a nurse
scheduling problem data set provided by Scheduling Benchmarks4.

1.1 Core requirements

• Identify a variant of the nurse scheduling problem suitable for scheduling volunteers.

• Develop a mixed-integer linear programming solver for the chosen nurse scheduling problem
variant.

• Evaluate the effectiveness of the solver.

• Develop an application for scheduling volunteers.

1.2 Advanced requirements

• Employ supervised search space pruning to optimize the scheduling algorithm.
1https://timecounts.org/
2https://wheniwork.com
3https://www.optaplanner.org/
4http://www.schedulingbenchmarks.org/index.html

Page 4 of 54

Chapter 2: Introduction

Volunteering is a popular activity in Ireland. The results of the 2013 Quarterly National Household
Survey show that 28% of Irish people volunteer and half of all volunteering was work carried out
directly by individuals (54.7% of hours worked) rather than through organisations (45.3%) [3].

Every volunteer group and organisation must deal with scheduling. Simple events can be scheduled
manually or by having volunteers self-schedule themselves. As events grow in size and complexity,
so does the scheduling complexity. Manually scheduling dozens of volunteers with varied availability
is difficult. The problem is exacerbated by introducing additional constraints like an experienced
volunteer must be present in the morning or a volunteer with access to a car is needed in the
afternoon.

I know from experience that scheduling volunteers is a time-consuming and cumbersome process;
it has been my mantle for the past two years to create rosters for UCD Netsoc’s1 Freshers’ Week
stand2. In this case, the scheduling process entails collecting a copy of each of the fourteen vol-
unteers’ timetables, perusing the timetables, scheduling the most exclusive volunteers, consulting
the timetables, scheduling the people with greater availability, flicking through the timetables,
balancing the workload, and re-checking the timetables for violations.

The roster I produced for Freshers’ Week 2019 is presented in figure 2.1. It could be better; for
instance, Nicole and Seán only work one shift while most work three shifts. The schedule meets
the hard constraints that those working the opening and closing shifts must have access to the
society locker, and the soft constraint that experienced committee members should work the busy
midday shifts. If you would like to see a complex roster with concurrent shifts, I have included a
roster made for the SISTEM3 2020 conference in figure 9.2 in the appendix.

Volunteer organisers would benefit from a volunteer rostering tool that can automatically schedule
volunteers. This project aims to create an application that would allow volunteers to submit
their availability and information in a structured way to the system. The organiser could quickly
configure a roster for a single or multi-day event. This event can have multiple roles e.g volunteers
could be scheduled to bring supplies to a stand or to supervise a stand. The application can
then use the availability of the volunteers to schedule people to shifts. The whole process, from
receiving the volunteers’ availability to generating the roster, should take a few minutes.

1https://netsoc.com/ – UCD Internet & Computing Society
2A society registration stand which is staffed for the duration of trimester one week two
3https://sistem.intersocs.ie/

Figure 2.1: 2019 Roster for Netsoc’s Freshers’ Week stand

Page 5 of 54

Chapter 3: Related Work and Ideas

To begin, I review existing volunteer rostering software. Next, I discuss the nurse scheduling
problem and explain how research in this area is relevant to the scheduling of volunteers. I describe
how machine learning techniques have the potential to enhance a nurse scheduling problem solver.
Last, I touch on the merits of serverless technologies.

3.1 Volunteer Rostering Applications

A volunteer scheduling system is not a new idea; there are many existing volunteer rostering
applications. Still, this project is unique because it can automatically schedule volunteers and it
caters to a wider variety of volunteering scenarios.

Timecounts1 is the epitome of a volunteer rostering systems. Timecounts allows an organiser to
plan a single or multi-day event where qualified volunteers can choose their shifts. The management
portal has an intuitive user interface that is easy to navigate and use. It offers advanced features
like a volunteer directory, data insight tools, and a messaging system.

Timecounts is not a substitute for Quick Roster. It does not offer automatic scheduling; volunteers
must instead sign-up for shifts (self-schedule). Timecounts limits rostering to one shift per time
slot which means you cannot schedule volunteers for different tasks. Timecounts does not allow
for skill relaxing; only those with the exact skill can sign-up for a shift. In contrast, Quick Roster
automatically schedules volunteers, it allows for skill relaxing, and the roster can accommodate
multiple tasks.

Other volunteer rostering applications include iVolunteer2, RosterVolunteers3, and SignUp 4. They
1https://timecounts.org/
2https://ivolunteer.com/
3https://rostervolunteers.com/wp/
4https://signup.com

Figure 3.1: Screenshot of the Timecounts rostering interface

Page 6 of 54

offer similar functionality to Timecounts, and schedule volunteers manually or with self-scheduling.
I could not find a volunteer rostering application that offered automatic scheduling.

3.2 Scheduling Applications

Here, I examine employee scheduling software as employee scheduling is closely related to volunteer
scheduling. The key differences are

• Employee scheduling applications are designed for business scheduling scenarios; typically
employees are scheduled for single continuous shifts. Volunteers have limited availability and
can only be scheduled in bursts e.g student volunteers availability is determined by their
college timetable

• Employees have distinct roles that restrict them to specific tasks. Volunteers have more
fungible roles and can be assigned to a range of tasks.

• Employee scheduling software can take a long time to set up but the application will save
time in the long run. Volunteering groups run events less frequently and sometimes with
different volunteers. A volunteering group may not benefit from the application if the setup
time for the application is long.

When I Work5 is the best employee scheduling tool I have found. Its main features include: an
intuitive UI, automatic scheduling at a cost of $2.50 per user, allows employees to be scheduled
for different tasks, and it has a companion app that allows employees to request time off.

This would not be suitable for volunteer scheduling because When I Work only allows an employee
to do one shift per day, a shift’s skill requirements aren’t relaxable, and since the employees can’t
specify all their availability upfront, it is time-consuming to set up for a one-off event.

OptaPlanner6 is an open-source AI constraint solver. It offers efficient automatic employee schedul-
ing – the solver leverages algorithms such as Tabu Search, Simulated Annealing, Late Acceptance,
and other meta-heuristics to perform quick scheduling. It provides a simple user interface for
rostering employees.

OptaPlanner is a good employee scheduling tool but is not suitable for volunteer scheduling:
employees can only be scheduled for a single block of time once per day; skills in the same skill
group are interchangeable but it doesn’t allow for skill relaxing outside of the skill group; it does
not allow skill quotas for a task e.g it is not possible to schedule a master butcher and two trainees
to the butcher counter; the organiser must input all the employees’ availability manually, and it’s
a java application that must be compiled and configured.

OptaPlanner also offers a Java planning engine that can be configured to the scheduling problem
at hand. A volunteer-orientated fork could be produced to satisfy this project’s niche. This
would require modifying the default constraints, changing the interface, building an interface for
volunteers to select their availability, tasks handling would have to be fundamentally changed to
allow further specification and the UI would have to change to reflect this. The planner would
have to be benchmarked to verify that the planning engine can still deliver adequate performance.
I have decided against this. It would be simpler to create a volunteer scheduler from the ground
up than to largely reconfigure the OptaPlanner planning engine.

5https://wheniwork.com
6https://www.optaplanner.org/

Page 7 of 54

Figure 3.2: Screenshot of the Doodle meeting-time selection interface

Doodle7 is a popular web application for deciding meeting times. A meeting organiser creates a
range of possible meeting times and shares a Doodle link with the participants. Each participant
selects the timeslots which best suits them. The meeting organiser can then select the most
appropriate meeting time.

I wish to model my application after Doodle: it is the gold standard for a self-scheduling application
in terms of its user experience. There is no need to download and configure an application; the
participants can fill out their availability which takes the burden off the meeting organiser, and it’s
free.

3.3 Nurse Scheduling Problem

The nurse scheduling problem (NSP) has been studied as far back as the 1960s [4]. The NSP
is a combinatorial optimization problem concerned with optimally assigning nurses to shifts in a
hospital ward while adhering to constraints such as nurses can only work one shift per day, and
there must be a twelve-hour rest period between shifts. The assignment can be optimized for
many objectives such as maximizing shift coverage (i.e ensuring each shift is properly staffed) or
minimizing the number of nurse hours. The volunteer scheduling problem can be phrased as a
NSP whereby the nurses are volunteers, wards are event locations, and many of the constraints of
the NSP are relevant to the volunteer scheduling program.

The NSP is a diverse problem; it can have many different configurations depending on the scenario.
De Causmaecker and Vanden Berghe devised a popular classification framework for the NSP that
uses an α|β|γ notation to describe instances of the problem [5]. The constraint category α refers
to personnel requirements such as availability or maximum hours per week; the category β refers
to the schedule characteristics such as do shifts overlap, are shifts time intervals, are shifts periods
e.g early shift or late shift; and γ refers to the optimization objective.

The variant of the NSP that I would like to address is: A(a)BN |TN |LP i.e the solution must
accommodate unavailabilities (A(a)); shifts must be equitably distributed (B); nurses can have
many skills (N); the schedule comprises of time intervals (T); there is a variable number of
shifts (N); the violations of personnel constraints (P) and of coverage constraints (L) should be

7https://doodle.com/en/

Page 8 of 54

Figure 3.3: Number of Organisations by Number of Volunteers

Source: Indecon analysis of Charities Regulator data [13]

minimized.

In addition to these constraints, the algorithm should allow for concurrent shifts and allow vol-
unteers to do multiple shifts of various lengths per day e.g it should be possible to schedule a
volunteer to be in Location A for two hours in the morning and location B for an hour in the
afternoon. Concurrent shifts are like speaker tracks at a conference: at nine am a speaker could
be presenting in the main hall (track one) or they could be participating in a panel discussion in
the alternate hall (track two).

None of the papers I have read address the new set of constraints (concurrent shifts and multiple
shifts per day) or A(a)BN |TN |LP . It makes sense that the new constraints I have described are
not catered for already: the nurse schedules are created on a per ward basis and nurses do at most
a single shift per day. This project must create a custom solver to address this problem.

Thanks to decades of research many solving techniques exist for the NSP such as mixed-integer
programming [6], local search algorithms [7], column-generation [8], memetic algorithm [[9], [10]],
genetic algorithms [11], tabu-search [12] and more.

This begs the question, what is the right approach for this project? The correct approach must
be able to handle many volunteers and can be developed within this project’s time frame. Figure
3.3 from Registered Irish Charities [13] shows that over half of charitable organisations (54.8%)
indicated they had between one and 20 volunteers. A further 15.1% of organisation have 20-49
volunteers. An ideal solver should schedule up to fifty volunteers.

Of the approaches I mentioned earlier, metaheuristics are most commonly employed to solve com-
plex scheduling problems. Metaheuristic solvers like ANROM [14] can scalably handle large prob-
lems. This comes at a cost; as you can see from figure 3.4, these solvers have a sophisticated
architecture. A good metaheuristic solver is not achievable within this project’s time frame. Mixed-
integer programming solvers on the other hand are simpler to create. Once the constraints of the
problem and the objective function are clearly defined, the problem can easily be formulated using
an integer programming solver like Gurobi or Xpress. MIP has been shown to provide quick and
optimal solutions for small instances of the NSP [[1], [15]]. However, as the problem size increases,
the MIP performance degrades sharply, unlike meta-heuristics which continue to scale.

This report must investigate if the performance of a MIP solver can be enhanced to tackle larger
scheduling problems. Lin et al. [16] had a similar problem. The researchers were using MIP models
to find the optimal production schedule of a set of generators while adhering to certain constraints.
However, the MIP solver was not quick enough. The researchers could create quick approximate

Page 9 of 54

Figure 3.4: Overview of ANROM’s solution framework

Source: Adapted from Handbook of Scheduling: Algorithms, Models, and Performance Analysis
[4]

solutions to the MIP by using a linear programming relaxation model which is typically quicker to
solve but the solutions proved too inaccurate. The U.S. Department of Energy employed machine
learning to remedy this. Their model was trained on the features which best predict the link
between coefficients in the MIP model, the LPR solution, and the optimal solution of the MIP
problem. This resulted in a 78% reduction in the discrepancies between LPR and MIP solutions.

I would like to investigate if it is possible to improve the MIP solution to a NSP by applying
machine learning.

3.4 Machine Learning Combinatorial Optimization

In this section I explore how machine learning can augment traditional algorithms; I discuss some
of these recent developments and works, particularly in the area of combinatorial optimization; and
I investigate if these machine learning techniques can be applied to the nurse scheduling problem.

3.4.1 Learning-Augmented Algorithms

Learning-augmented algorithms are modified versions of classical algorithms that use machine
learning to adapt their behaviour to the properties of the input distribution [17]. This is a nascent
research area that has already seen impressive developments. As an illustrative example of how
machine learning can augment traditional data structures, let’s look at the bloom filter. A bloom
filter is a space-efficient data structure that can confirm if an element is not in a set with certainty

Page 10 of 54

Figure 3.5: A learned bloom filter: Tier one outputs no if x it is absent from the set. Tier two
outputs yes if it predicts x is in the set. Tier three asserts x is absent or predicts it might be in
the set.

Source: Adapted from What Can ML Do For Algorithms? [19]

and predict if an element might be in the set. Mitzenmacher [18] utilizes a learned oracle to
improve the performance of a bloom filter. A machine learning model can predict if an element
belongs to a set by training the model on the input data. The learned model works in tandem
with the bloom filter to improve the filter accuracy, as shown in figure 3.5.

Machine Learning has been used to augment other algorithms and data structures. Balcan et al.
[20] apply machine learning to a tree search algorithm configuration and showed a nearly optimal
mixture of branching rules can be learned. Kraska et al. [21] show that B-Tree indexing can be
improved by using indexes learned from the distribution of the data to be indexed. Purohit et al.
[22] use machine-learned predictions to improve the performance of online algorithms used to solve
the classic ski rental problem and the non-clairvoyant job scheduling problem.

3.4.2 Machine Learning Combinatorial Optimization Techniques

The existing machine learning techniques for solving combinatorial optimization can broadly be di-
vided into three categories: supervised learning, unsupervised learning, and reinforcement learning.

Supervised machine learning models automatically learn relationships or patterns between a set of
features and a target feature from a repository of labeled data [23]. For instance, Vinyals et al.
[24] created a new supervised deep learning neural architecture, Pointer Net, to learn approximate
solutions to the Travelling Salesman problem and two other problems.

Unsupervised models learn underlying relationships by grouping unlabelled data into clusters and
using those clusters to categorize data [25]. For example, Probst et al. [26] integrated a Re-
stricted Boltzmann Machine into an Estimation of Distribution Algorithm to solve single object
combinatorial problems.

Reinforcement learning is learning how to map situations to actions in order to maximise a re-
ward. This is achieved through exploring the data to find new patterns, and through leveraging

Page 11 of 54

Figure 3.6: An illustration of the pruning framework in action. The black-filled circles represent
elements in optimal subset while the white-filled circles represent the elements not in the optimal
subset. The dashed line indicates the decision boundary.

Source: Modeled after Figure 1 from Learning fine-grained search space pruning and heuristics for
combinatorial optimization [2].

the knowledge it has built up through past explorations [27]. For example, Dai et al. [28] cre-
ated a reinforcement learning framework for automatically designing greedy heuristics for hard
combinatorial optimization problems on graphs.

3.4.3 Supervised Pruning

The approach I’m most interested in using is supervised pruning. Lauri et al. [2] propose a novel
framework for leveraging machine learning techniques to scale up exact combinatorial optimization
algorithms. The researchers apply the framework to the classical maximum clique enumeration
problem. The framework learns the most important local features for determining the maximum
clique. Using these features, the framework (non-exhaustively) prunes elements of the problem
that it has predicted are not in the optimal subset, as seen in figure 3.6. This can greatly reduce
the problem size which allows solvers to handle larger instances.

This framework has the potential to be applied to the nurse scheduling problem. Through feature
engineering, the most important features for determining who will be assigned to each shift can
be identified. I can train a supervised machine learning model using these features to predict who
won’t be scheduled for a shift. This has the effect of reducing the sample space. Using these
predictions, the MIP solver can create a solution faster. If the predictions are good, the MIP solver
will be capable of handling larger instances of the problem.

3.5 Serverless Applications

There is an increasing trend to move applications to the cloud, and for good reason. Armbrust,
M.et al. [29] highlight six of the many advantages of using cloud-native infrastructure over on-
premises infrastructure:

1. The appearance of infinite computing resources on demand.

Page 12 of 54

2. The elimination of an up-front commitment by cloud users.

3. The ability to pay for use of computing resources on a short-term basis as needed.

4. Economies of scale that significantly reduced cost due to many, very large data centres.

5. Simplifying operation and increasing utilization via resource virtualization.

6. Higher hardware utilization by multiplexing workloads from different organizations.

Cloud-native infrastructure offers the ability to develop serverless applications. A serverless ap-
plication, as defined by Jonas, E. et al. [30], must scale automatically with no need for explicit
provisioning, and be billed based on usage. That paper states that for many applications, server-
less computing offers a significant cost saving compared to a serverful approach. There are some
resource-intensive tasks that may not suitable to use cloud functions. The paper conducted exper-
iments that found that large-scale linear algebra computations were 3x slower and that machine
learning training at scale was 7x more expensive compared to a serverful approach.

By developing Quick Roster with Amazon Web Services8, it can benefit from the advantages of a
cloud-native infrastructure. I expect the application to be used infrequently so it would be more
cost-effective to develop the application using a serverless architecture. The web components
will be built using AWS Lambdas. I will build the scheduler service into a Fargate9 container.
AWS Fargate is a serverless compute engine for containers that can be invoked on-demand and
only bills for the compute resources used when the container is invoked i.e the application won’t
incur any charges while the scheduling service is idle. Fargate is used instead of Lambdas because
experiments conducted by Jonas, E. et al. show that building resource-intensive services such as
the scheduling service using cloud functions can be costly.

I have chosen to use the cloud vendor AWS because I am familiar with its services and it integrates
with Ruby on Jets10. Ruby on Jets is a serverless framework that can easily create and deploy
serverless applications to AWS. I intend to use this to create the AWS infrastructure.

3.6 Summary

There are many volunteer rostering applications, but none of them provide auto-scheduling or
is designed for complex scheduling scenarios. Similarly, there are many well-designed scheduling
applications. When I Work is an excellent application but it is not suitable for volunteer scheduling.
OptaPlanner planning is a close contender but it requires too much redesign to be suitable for
volunteer scheduling. A bespoke solution is needed to solve this problem.

The volunteer scheduling problem is analogous to the nurse scheduling problem. The multi-integer
programming techniques used to solve the NSP can be applied to this project’s problem. A MIP
solution may not be capable of handling large instances of the problem. Machine learning has been
applied to similar problems with great success. Supervised pruning has to potential to speed up a
MIP solution so that it is capable of handling practically large instances of the problem.

8https://aws.amazon.com/
9https://aws.amazon.com/fargate/

10https://rubyonjets.com/

Page 13 of 54

Chapter 4: Mixed-Integer Programming
Formulation of the NSP

4.1 Overview

The project is concerned with creating a solver which can handle the A(a)BN |TN |LP variant
of the NSP. This is accomplished by expressing the problem as a MIP formulation which then
enables the problem to be solved by mathematical optimization solvers like Gurobi and Fico Xpress.
Mathematical solvers can produce optimal solutions to the problem which allows for the creation
of accurate training data.

Before describing the formulation of the integer programming problem, it is important to highlight
the distinction between days, tracks, shifts, and skills. Consider the example in table 4.1. The
organiser of this one-day event wishes to schedule their volunteers. There are two rooms to be
staffed: the main theatre and the workshop room. These rooms are considered to be tracks
because they have independent staffing requirements. The event runs across three time periods: 9
am, 10 am, and 11 am. These time periods are considered to be shifts. Last, the workshop track
requires both novice and experienced volunteers. These volunteer qualities are considered to be
skills.

To make this formulation and software implementation suitable for domains outside of volunteer
scheduling, this project uses general terminology in the formulation and in the software implemen-
tation. Hence, volunteers are referred to as workers in the following formulation.

Day 1
Main Theatre Workshop Room

Novice Experienced Novice Experienced
9 am 0 3 2 1
10 am 0 2 2 1
11 am 0 2 3 1

Table 4.1: Mock scheduling scenario that consists of one day (Day 1), two tracks (Main Theatre,
Workshop Room), three shifts (9 am, 10 am, 11 am), and two skills (Novice, Experienced). The
values represent the number of volunteers needed for each shift.

4.2 Mixed Integer Programming Formulation

Problem Parameters

Page 14 of 54

W Set of workers.
D Set of days in the scheduling period.
T Set of tracks.
S Set of shifts.
K Set of skills.
awds Availability of worker w for day d, shift s.
rdtsk Required number of workers for shift (d, t, s, k).
pwdtsk Penalty for assigning worker w to shift (d, t, s, k).
mw Maximum number of shifts that worker w can be assigned to.
taw Total shift assignments for worker w.
ssdtsk Shift slacking for shift (d, t, s, k).
ts Total slacking for the entire schedule.
sp Total skill penalty for the entire schdule.

The decision variable is xwdtsk; it is a binary variable that denotes whether worker w is assigned
to shift (d, t, s, k) or not.

Primary Constraints

1. A worker can do at most one shift at a time.∑
t∈T

∑
k∈K

xwdtsk ≤ 1, ∀w ∈W,d ∈ D, s ∈ S

2. A worker cannot be scheduled if they are not available.

max(xwdtsk) = awds, ∀w ∈W,d ∈ D, t ∈ T, s ∈ S, k ∈ K

3. A worker’s total workload is the sum of all their assigned shifts.

taw =
∑
d∈D

∑
t∈T

∑
s∈S

∑
k∈K

xwdtsk, ∀w ∈W

4. A worker cannot be assigned to more shifts than their maximum shift limit.

taw ≤ mw, ∀w ∈W

5. The total skill penalty is the total cost of assigning workers with sub-optimal skills.

sp =
∑
w∈W

∑
d∈D

∑
t∈T

∑
s∈S

∑
k∈K

xwdtskspwdtsk

6. Sometimes it is not possible to assign all the required workers so the requirements must be
reduced or ’slacked’.

ssdtsk = rdtsk −
∑
w∈W

∑
d∈D

∑
t∈T

∑
s∈S

∑
k∈K

xwdtsk

7. The total amount of slacking should be limited as this affects the quality of the solution.

ts =
∑
d∈D

∑
t∈T

∑
s∈S

∑
k∈K

ssdtsk

Primary Optimization
The primary optimization creates a roster with the most coverage and with the most suitable
workers by minimizing the linear combination of the number of slacked shifts and the total skill
penalty for some choice of a and b.

Minimize a(ts) + b(ss)

Page 15 of 54

Secondary Constraints

1. The average number of assignments is calculated by:

as =

∑
w∈W taw

|W |

2. The difference between each worker’s workload and the average workload indicates the fair-
ness of the workload.

diffw = taw − as, ∀w ∈W

3. The total slack penalty is fixed to prevent it from being degraded in the secondary optimiza-
tion.

ts = value(ts)

4. The total skill penalty is allowed to increase by up to a factor of k.

value(sp) ≤ sp ≤ k(sp)

Secondary Optimization
The secondary optimization improves the fairness of the roster by minimizing the difference between
each worker’s workload. This optimization reduces the risk of some workers being assigned an
excessive number of shifts while other workers receive few assignments which can be an issue in
sparse schedules.

Minimize
∑
w∈W

(diffw)
2

Page 16 of 54

Chapter 5: Data Considerations

5.1 Overview

As a prerequisite for training a supervised model, the project needs a collection of labeled rosters
to use as training data. The rosters must be relatively diverse: they must have varied dimensions
in terms of the number of shifts and volunteers; the shifts must have varied staffing requirements,
and volunteers must have varied availability and suitability for shifts.

There is a limited amount of benchmark data available for the NSP because problem descriptions
and models vary drastically and depend on the needs of the particular scheduling scenario. As a
result, there isn’t an ideal data set for this variant of NSP. In the absence of benchmark data,
Vanhoucke and Maenhout propose an approach for generating problem instances under a controlled
design [31]. This project primarily uses their problem generation approach to create a suitable data
set. Additionally, this project includes modified instances from a related NSP benchmark data set
in the training data.

5.2 Schedule Generation

In Vanhoucke and Maenhout’s approach, problem instances are generated using parameters that
dictate the size of the problem, the preferences of the workers, and the coverage required. Based
on their approach, the project uses the following parameters to generate instances: num_workers,
num_days, num_shifts, num_tracks, num_skills, mean_staffing_requirement, and
mean_availability.

The mean_staffing_requirement parameter dictates the average percentage of volunteers that
are required for a set of shifts. The mean_availability parameter dictates the average percent-
age of shifts that volunteers are available for.

The generator uses these problem parameters to compute the following variables:

1. worker_max_shifts is the most amount of shifts a volunteer can be assigned to over the
duration of the scheduling period. This is computed by subtracting a lognormal random
variable from the total amount of shifts.

2. worker_id_to_skill_map maps each volunteer to a set of skills that they possess. These
skills are uniformly distributed.

3. worker_availability indicates if a volunteer is available for a given shift. This is a
Bernoulli random variable with a mean defined by the mean_availability parameter.

4. shift_staffing_level_requirements is the required number of volunteers for an indi-
vidual shift. It is a Gaussian random variable; its mean is a function of the
mean_staffing_requirement parameter.

Page 17 of 54

The random variables’ distribution parameters are chosen by reviewing plots of the distribution’s
probability density function and selecting the parameters that provide a varied and realistic spread
of values. The notebook for creating these plots is included in the project repository.

5.3 Scheduling Benchmarks

Scheduling Benchmarks1 hosts some of the most popular NSP data sets. It contains two types of
problems: nurse rostering and multi-activity shift scheduling. This project is interested in using
the multi-activity shift scheduling data set because it is most similar to the volunteer scheduling
problem.

The data set contains 255 instances in an XML and txt format. The scheduling period spans 7,
14, 21, or 28 days; each day is broken into fifteen minute shifts; the number of workers ranges
from 10 to 150; the number of tasks ranges from 1 to 19, and only a small fraction of the staff
are required at any one time.

The key difference between the benchmark problem and the volunteer scheduling problem is the
benchmark problem lacks skill requirements and workers do not have any availability preferences.
However, these multi-activity problems can be modified to include these elements. After run-
ning some small experiments, I found that because these instances are so large and workers are
sparsely scheduled, only a few of these instances can be solved within a few hours and are repre-
sentative of a volunteer scheduling problem. Large sparse schedules are not too challenging when
scheduling employees who work for long continuous blocks of time but volunteers can be scheduled
discontinuously which results in a much larger search space.

This project had intended to make extensive use of this data set but because of the challenges
mentioned above, only a few instances are included in the training data.

5.4 User Volunteered Schedules

This project has the opportunity to create a genuine volunteer scheduling data set by collecting
user volunteered schedules. After a user successfully creates and solves a schedule, they are asked
if their schedule can be retained by the application. If the user opts-in, identifying information like
volunteer names, skill names, etc are removed and the anonymous schedule is stored securely in
the cloud. This data can be reused later to improve the application.

1www.schedulingbenchmarks.org

Page 18 of 54

www.schedulingbenchmarks.org

Chapter 6: Methodology and Implementation
Details

6.1 Nurse Scheduling Problem Solver

Earlier, this report described a formulation for the volunteer scheduling problem. The next step is
to implement the formulation in a mixed-integer programming solver. There is a wide variety of
open-source and propriety solvers available. This project considers using the popular Gurobi and
FICO Xpress solvers. An early version of the formulation was implemented in both solvers and I
found that both solvers performed similarly but Gurobi is easier to work with because it provides
a range of examples and clear documentation. Additionally, I found that Gurobi models are easier
to dockerize; this is an important quality because serverless compute tasks must be containerised.
For these reasons, I opt to implement the formulation in Gurobi.

The codebase for the solver is written in Python. The solver and its related components are
implemented using an object-orientated approach whereby schedules, rosters, worker data, shift
data, skill data, and the scheduler are expressed as objects. The scheduler object takes in schedules
as an argument and produces rosters. Each schedule is composed of worker data, shift data, and
skill data. The roster object is a superset of the schedule object; it contains the schedule object
as well as roster assignments and meta-data from the Gurobi model. I implement a preprocessing
step whereby workers who are unavailable for a shift are pruned; this optimization is unrelated to
the supervised search space pruning that will be experimented with later in this project.

Last, the solver needs to be dockerised so it can be easily ported to the cloud. This involves
creating a main script that informs the solver where to read the input files from and where to store
the output. A Dockerfile is used to put the service together and install the necessary dependencies
like Gurobi and the AWS command-line interface; the Dockerfile is presented in figure 6.1.

6.2 Back end

Originally, this project planned to use the Ruby on Jets framework to deploy the Amazon Web
Services (AWS) back end. After planning out the back end in finer detail, it was clear that Jets
could not easily support the new design. Instead, I opt to configure the back end manually in
six stages: creating the scheduling service, automating the scheduling service, user management,
front end infrastructure, and advanced configuration. Because I use the AWS console to configure
the service, it is difficult to review how the back end is assembled. To account for this, I describe
the back end setup in great detail.

Page 19 of 54

1 FROM continuumio/miniconda3
2 ADD environment.yml /tmp/environment.yml
3 RUN conda env create -f /tmp/environment.yml
4 RUN echo "conda activate $(head -1 /tmp/environment.yml | cut -d

’ ’ -f2)" >> ~/. bashrc
5 ENV PATH /opt/conda/envs/$(head -1 /tmp/environment.yml | cut -d

’ ’ -f2)/bin:$PATH
6 ENV CONDA_DEFAULT_ENV $(head -1 /tmp/environment.yml | cut -d’ ’

-f2)
7 WORKDIR /usr/src/app
8 COPY service/ ./
9 ENTRYPOINT ["conda", "run", "-n", "gurobi -solver", "bash", "main

.sh"]

Figure 6.1: The Dockerfile that containerises the solver service. Conda installs the required de-
pendencies which are read from the environment.yml file. The main.sh file which bootstraps the
service is launched within a Conda environment.

Figure 6.2: AWS Serverless Architecture for Quick Roster.

6.2.1 Creating the Scheduling Service

To export the scheduling service to Fargate, I must create each of the Elastic Container Service
objects shown in figure 6.3. Fargate is a serverless compute engine for containers that is cheaper
and more scalable than a standalone server for sporadic tasks. The benefits of using Fargate over a
typical server is that Fargate can be run on-demand which eliminates the need to provision servers

Page 20 of 54

and it can scale to run a practically unlimited number of instances in parallel.

Figure 6.3: Diagram taken from the Fargate setup wizard that illustrates how Fargate objects
relate.

I start by uploading the solver container built in the previous section to a Docker Hub1 repository.
This allows Fargate to discover and install the container. Next, I create a new Fargate task and
give it access to the docker hub repository. I also specify the environment variables required by
the scheduler container such as the input and output directory; configure the required memory and
CPU cores, and set the container to automatically log information to CloudWatch. CloudWatch
is AWS’s monitoring and logging service which is capable of recording and alarming a large variety
of metrics.

The only step required in setting up the task definition is to give the task an IAM role so the task
has permission to read and write the schedules and solutions. IAM is AWS’s credential management
service; it can provide services with additional permissions by assigning a service a role. In this
case, I create a role that allows schedules to read from an S3 input bucket and write to an output
bucket.

There is no need to provision a service to manage the task because the task execution will be
entirely event-driven.

Last, I configure the Fargate cluster. The cluster is used to manage the running of the tasks. I
apply an auto-scaling rule to the cluster that simply limits the number of running tasks to prevent
the service from being abused. If the web application proved to be popular, the auto-scaling service
can be more intricately defined.

6.2.2 Automating the Scheduling Service

I automate the scheduling service by leveraging S3 event triggers. S3 is AWS’s cloud storage
offering. The benefit of using an S3 bucket is it can trigger an event when a new file is uploaded.

I create two S3 buckets for schedule files and rosters. I configure the input bucket to only accept
JSONs and to trigger the ’solve-schedule’ lambda when a new file is uploaded. Similarly, I configure
the output bucket to trigger the ’notify-user’ lambda.

AWS Lambda is a serverless compute service that can run code functions. When the ’solve-
1www.hub.docker.com

Page 21 of 54

www.hub.docker.com

schedule’ lambda is triggered, it starts a new Fargate schedule task and passes in environment
variables that inform the scheduler where to read the input schedule from and where to write the
output to. When the ’notify-user’ lambda is triggered it uses the AWS Simple Email Service to
email the user to notify them that a roster has been produced.

6.2.3 User Management

To prevent the service from being abused and to easily keep track of data, users must create an
account. Rather than implement a user management system from scratch, I use AWS Cognito.
Cognito provides a range of user management tools. This project uses it to allow users to easily
sign-up and sign in to the web application.

To set up Cognito, I create a default user pool for the application. A user pool allows one to control
all aspects of the user sign-up process such as password quality, multi-factor authentication, specify
what details are needed to sign-up, etc. Once the user pool is set up, I record the pool credentials
which will be needed later to connect the front end to the user pool.

6.2.4 Front End Infrastructure

I opt to use AWS Amplify to host the web application. Amplify is an inexpensive and scalable
service for hosting web applications. To set up Amplify, I simply provide the service with access
to the front end repository and configure it to auto-build the website every time I commit to the
repository.

By default, Amplify comes with its own domain, though I would like to use a custom domain2 for
the service. Before I add my domain, I move the domain’s DNS server to AWS Route 53. The
benefit of doing this is that AWS services closely integrate with Route 53. Once Route 53 is set
up, I add my domain to Amplify by simply selecting it from a drop-down menu.

6.2.5 Advanced Changes

At this stage, the back end is completely functional. However, the only method to communicate
with the back end is through uploading files. To allow more advanced interactions, I create a REST
API using AWS’s API Gateway service which is capable of passing requests to individual services
like Lambda and DynamoDB. I configure the gateway to only accept requests from authenticated
users. There are no active APIs for the service, but it is in a position where the API can be expanded
upon in the future to allow users to modify their accounts and to connect a GUI schedule builder
to the back end.

Finally, I use DynamodDB to record user data. I create a simple NoSQL table that maps a user
email to a set of preferences. At this time, the table just records if the user has granted permission
for their schedules to be used to improve the service.

2www.quickroster.me. The site will not be made public until the embedded credentials are secured. To try the
site before then, follow the readme in the front end repository to easily launch the front end on your local machine.

Page 22 of 54

www.quickroster.me

1 <template >
2 <div class=" container">
3 <h1>Schedule Upload </h1>
4 <UploadArea/>
5 </div >
6 </template >
7

8 <script >
9 import UserInfoStore from ’@/app/user -info -store ’;

10 import UploadArea from ’@/components/UploadArea ’;
11

12 export default {
13 components: {
14 UploadArea
15 },
16 data: function () {
17 return{
18 userInfo: UserInfoStore.state.cognitoInfo
19 }
20 }
21 }
22 </script >
23 <style > </style >

Figure 6.4: A sample Vue file that describes an upload page.

6.3 Front end

To make the solver accessible to the widest possible audience, this project is offering the service
as a web application. To build a powerful, sophisticated front end would take more time than this
project can afford. Instead, the focus is to provide a simple, robust, prototype front end that can
be easily extended in the future to include advanced features.

To construct the front end, I consider using the Vue, React, and Angular JavaScript frameworks.
These frameworks use a model–view–viewmodel (MVVM) software architecture that separates the
user interface (the view) from the back end logic (the model); the view model allows data objects
from the model to be exposed to the view. These frameworks are easy to connect to server-side
infrastructure; there is a wealth of resources and documentation available for implementing typical
web app features using these frameworks, and they have access to a wide range of libraries.

I opt to implement the front end in Vue because it is lightweight and simpler than the other
competing frameworks. The structure of a Vue file is similar to a standard web page. A sample
’view’ of a web page for uploading files is presented in figure 6.4. The template block contains
HTML which describes the structure of the web page. The upload area tag is an example of a Vue
component. A component is a standalone Vue object that can be inserted into a web page. The
script block contains JavaScript and Vue code. This script imports a data structure that tracks
logged-in users and the upload area component so that it can be injected into the template. The
style block can be used to apply CSS to the page.

To get started, I use the Vue CLI to create a blank project. I import the Bootstrap3 framework
which provides a high quality default element style and I import Sass4 so I can create powerful

3www.getbootstrap.com
4https://sass-lang.com/

Page 23 of 54

www.getbootstrap.com
https://sass-lang.com/

CSS rules. I design the site in adherence to the Material Design guidelines5. I create the following
pages: a landing page; a ’manage’ page where authenticated users can access the scheduling
service; an upload page where users can upload schedule files, and a ’files’ page where users can
see previously uploaded schedules and download completed rosters.

I install the vue-router6 library which allows Vue applications to be developed as a single page
application. I implement a custom vue-router to control the flow of the application. The benefit
of using the router is I can prevent unauthenticated users from accessing certain areas of the
service. To determine if a user is authenticated, the router checks if the user session has a valid
JSON Web Token. If the user lacks a valid token, they are redirected to Congito’s sign-up and
sign-in page. If the user successfully logs in, a JavaScript user-store object caches their token.

To use the scheduling features of the web app, an authenticated user must upload a schedule JSON
file in the upload area. To upload their schedule, the user’s Vue session is temporarily granted
credentials which allows it to upload the schedule to the S3 input bucket, in a sub-directory that
corresponds to the user’s email. Similarly, when a user visits the files page to view their schedules
and rosters, the Vue session is temporary granted credentials to retrieve their files from S3.

To make the web application public, the front end code is uploaded to a private repository and
the Amplify service is given access to build the site.

6.4 Data Preparation

In the Data Considerations chapter, I identified two sources of data: artificially generated schedules
and the scheduling benchmarks multi-activity data set. This project uses these data sources to
produce solved rosters which are then split into training, validation, and test data sets. The data
must be preprocessed and labeled before it can be used. Preparing the data involves creating a
generator to produce a range of artificial schedules, transforming benchmark instances into a more
usable format, and creating a method for the solver to load these problems.

6.4.1 Preparing the Data

To generate artificial data, I create a data generator object in Python that implements the gen-
eration scheme described in the previous chapter. The generator takes the previously described
problem parameters, uses the SciPy7 library to produce random variables, and outputs a schedule
object. The schedule object has an encoding function that exports the schedule as a ’schedule’
JSON file. The structure of a schedule file is presented in figure 6.5.

To utilise the benchmark problems, I create a parser to load the schedule txt file like one presented
in figure 6.6, convert it to a Python object, and makes the following transformations: each task
in the instance is interpreted as a track; each worker’s maximum total minutes is interpreted as
a worker’s maximum shift limit; the mid-interval value of the minimum and maximum coverage
is interpreted as the number of staff required for a shift. The instance doesn’t specify worker
availability so they are assigned a random block of time-off such that a worker has at least eleven
hours off every twenty-four hours. After parsing the instance, it is exported as a schedule JSON
file for later use.

5www.material.io/design
6https://router.vuejs.org
7www.github.com/scipy/scipy/

Page 24 of 54

www.material.io/design
https://router.vuejs.org
www.github.com/scipy/scipy/

1 {
2 "uuid": ... ,
3 "shift_data": {
4 "day_names": [...],
5 "shift_names": [...],
6 "shift_staffing_level_requirements": [day][track][shift]

[skill],
7 "track_names": [...]
8 },
9 "skill_data": {

10 "skill_hierarchy": {skill_id -> [[alt_skill, penalty],
...]},

11 "skill_id_to_name_map": {skill_id: "skill_name"}
12 },
13 "worker_data": {
14 "worker_availability": [worker][day][track][shift][skill

],
15 "worker_id_to_skill_map": {id -> [skills]},
16 "worker_max_shifts": [...],
17 "worker_names": [...]
18 }
19 }

Figure 6.5: A sample schedule JSON. Schedule files contain all the information needed by the
solver to produce a roster.

1 SECTION_HORIZON
2 7
3

4 SECTION_TASKS
5 3
6

7 SECTION_STAFF
8 # ID, MinTotalMinutes , MaxTotalMinutes
9 1 ,2040 ,2400

10 2 ,960 ,2400
11 3 ,2220 ,2400
12 ...
13

14 SECTION_COVER
15 # Day , Time , TaskID , Min , Max
16 1 ,06:00 -06:15 ,1 ,1 ,1
17 1 ,06:15 -06:30 ,1 ,1 ,1
18 1 ,06:30 -06:45 ,1 ,1 ,1
19 ...

Figure 6.6: A sample multi-activity problem file.

Page 25 of 54

In order for the MIP solver to produce a roster, the schedule files need to be parsed into a schedule
object. This requires a decoder. I created a schedule decoder in Python that can deserialize the
JSON files, convert them to Python objects, substitute in constants like penalty values, and yield
a schedule object which can be used by the solver.

Before I label the data, I generate a set of 235 schedule with the following parameters:

• Number of workers ∼ U(7, 40)

• Number of days ∼ 1 + 3 · Lognormal(1, 1)

• Number of shifts ∼ N (7, 1.5)

• Number of tracks ∼ 1 + Lognormal(1, 1)

• Number of skills ∼ U(1, 4)

• Mean availability ∼ 1− exp(0.1)

• Mean staffing requirement ∼ N (0.5, 0.15)

The distribution of these parameters is chosen by reviewing plots of the probability density function
and selecting the parameters which provide a varied and realistic spread of values. Additionally,
fifteen of the easy benchmark instances are chosen at random to be included in the collection.
The easy benchmark instances can be computed within a few hours as opposed to a few days.
I’m only including a small number of these instances; as previously mentioned, they are extremely
sparse in terms of shift requirements, and some schedules span weeks in duration which is not a
realistic duration for a volunteer event. This results in a collection of 250 schedules which is then
randomly divided using a 60:20:20 split into a training set of 150 schedules, a validation set of 50
schedules, and a test set of 50 schedules.

6.4.2 Labeling the Data

I have created three data sets that need to be labeled. First, each of the schedules is solved by
the scheduler which produces an optimal roster for each of the schedules. A roster contains all the
information of a schedule in addition to a matrix indicating if a volunteer w is assigned to shift
(d, t, s, k). The Gurobi solver is configured to return all optimal solutions it encounters so there
are multiple results for each of the schedules. It is important to keep in mind that this is not an
exhaustive set of optimal solutions.

Next, each of the rosters is processed by the roster labeler object. The labeler relates each volunteer
w and shift (d, t, s, k) to a target variable that denotes if that volunteer is assigned to that shift.
At the same time, the labeler computes the values of each of the features described in the next
section. The features and target values for each roster are exported to a CSV file.

Finally, the labeled rosters are concatenated together to produce two labeled CSV files for the
training and evaluation data sets.

6.5 Machine Learning

The exact solver can produce excellent rosters. However, for large instances, the running time can
be significant. For a schedule with more than thirty volunteers, it can take from a few minutes

Page 26 of 54

to several hours to compute the solution. Although this project is cloud-based and has access to
practically unlimited amounts of computing power, AWS bills computing tasks by the second. It is
in the interest of the project to optimize the solver’s performance so it can solver larger problems,
compute results more quickly, and minimize the cost of the service.

As discussed in the related works, combinatorial problems like the NSP can be optimized with a
machine learning pruning technique whereby a model is trained to identify decision variables that
are unlikely to be included in the optimal solution. The decision variables can then be pruned
which allows the MIP solver to compute the solution faster.

The goal is to create a model that can significantly prune instances while maintaining the integrity
of the solution. The following metrics are used to evaluate a model’s ability to achieve this goal:

1. False negative rate is the percentage of assignments that belong in the optimal solution
but are misclassified to be not assigned. A high false negative rate indicates that volunteers
in an optimal solution are being incorrectly pruned. There isn’t a one-to-one relationship
between the false negative rate and the objective function score because the labeled data
only contains a subset of the optimal solutions. This means some misclassifications may not
degrade the solution quality.

2. Prune percentage is the percentage of decision variables that can be pruned from the
problem. This indicates how much quicker the solver will become. One would expect that
significantly pruned problems can be solved much quicker compared to the original problem.

3. Change in objective function score is the percentage difference between the objective
score of the exact solution and the predicted solution. This metric quantifies the change in
solution quality.

To support the rapid prototyping and modifications to the machine learning process, I created
a simple file-based machine learning pipeline which is presented in figure 6.7. The pipeline is
controlled by a Python script that uses flags to indicate which stages to perform and skip. The
pipeline constants like file directories are defined in a constants object so they can be easily modified.
The pipeline is supported by a series of helper scripts that bootstrap different operations.

Figure 6.7: File-based machine learning pipeline pipeline for creating rosters, labelling data, experi-
menting with machine learning, and performing experiments. The flow of the pipeline is controlled
by a Python script.

Page 27 of 54

6.5.1 Feature Engineering

There isn’t a standard feature set for the NSP so I devised a wide range of features that might be
useful for determining the likelihood of a volunteer being assigned or not. I identified 33 potential
features that fall under one of these five categories:

• Problem dimension e.g number of workers, number of days.

• Volunteer availability e.g worker is available, worker max availability.

• Schedule requirements e.g staffing requirements, availability sparsity.

• Penalty e.g worker skill penalty, worker penalty vs average penalty for available workers of
that shift, does the worker have the minimum penalty.

• Meta-features such as the linear programming relaxed (LPR) value of the decision variable.

The time to compute each feature value for a schedule is negligible. The most expensive feature
is the LPR value which can usually be calculated in sub-second time. The LPR is computed by
solving the schedule as a linear programming problem and recording the value of the decision
variables. The difference between a linear programming problem and a MIP is that variables in
a linear program are all continuous while MIP variables can be a mix of integer and continuous
values. In the context of the NSP, this means that workers can be partially assigned to shifts which
is nonsensical but as we see later, this proves to be a valuable feature. The only change needed
to solve the scheduled as linear programming problem is to relax the integer variables of the MIP
formulation to continuous variables using Gurobi’s relax function. Otherwise, the problem can be
solved normally. I want to highlight that the relax function does not relax binary variables as one
might expect; this transformation must be implemented by the programmer.

After creating an initial feature set, feature selection is performed to reduce the dimensionality of
the feature set and to remove poor quality features. At each stage in the feature selection process,
a stochastic gradient descent classifier and a random forest classifier are trained using the updated
training data and the classifiers are evaluated using the validation data to verify that their false
negative rate and prune percentage scores are not degraded.

First, the highly correlated features are removed. Each feature’s Pearson correlation coefficient is
computed using the Pandas8 corr() function and displayed on a Seaborn9 heat map. If a pair
of features have a correlation ≥ |0.9|, one of them is removed depending on which feature seems
least useful in terms of information gain and random forest importance.

Next, the mutual information between each feature and target variable is computed using Sklean’s10

mutual information classifier. Features with an information gain of less than one percent are
removed without affecting the evaluation metrics. Similarly, the Gini importance of each feature is
computed using Sklearn’s random forest classifier. Features with importance less than one percent
can be removed without consequence.

At this point, the feature set has been reduced from 33 features to 16. Finally, to reduce the
feature set even further, I use sequential forward selection to greedily identify which subset of
features results in a monotonic decrease in the false negative rate while maintaining a reasonable
prune percentage. I choose to use forward search over an exhaustive technique like sequential
backward selection because it is much quicker to perform: the sequential backward selection has

8Open source data analysis and manipulation library.
9Python data visualization library based on matplotlib.

10Python machine learning library

Page 28 of 54

to train many more iterations of the model which is particularly time-consuming as the random
forest classifier takes many minutes to fit this data set.

This process reduces the feature set to just eleven features. A list of these eleven features along
with their Gini importance and their information gain is presented in table 6.1. A list of all 33
features and a brief description of each feature is included in the appendix. A heat map showing
the correlation of the remaining eleven features is also included in the appendix.

Feature Name Gini Importance Information Gain
Linear programming value of the decision variable 0.507 0.216
Worker skill penalty equals the minimum penalty 0.128 0.208
Worker skill penalty 0.114 0.169
Difference between current worker’s skill penalty and the
average available worker’s skill penalty

0.081 0.090

Worker maximum availability 0.051 0.008
X 2 of the staffing requirements for the current day 0.030 0.024
X 2 of the staffing requirements for the current shift 0.030 0.020
Sparsity of staff availability 0.025 0.028
Worker availability Z-score 0.015 0.026
Difference between current available and average availabil-
ity

0.013 0.009

Worker’s available shifts is less than the worker’s maximum
shift limit

0.006 0.123

Table 6.1: A list of the eleven best features, their Gini importance, and their information gain.

6.5.2 Training

To take advantage of Sklearn’s wide range of models and tools, a Python Jupyter notebook is used
to facilitate the model training. The training and validation data sets are loaded using a Pandas
data frame. I opt to standardize the data using Sklearn’s standard scaler which converts feature
values to Z-scores by subtracting the mean and scaling the data to unit variance.

The training data is extremely unbalanced. It contains 1,466,873 values, 137,552 of which are
assignments and 1,329,321 are non-assignments (91:9 split). I remove all data points where the
volunteer is unavailable because the scheduler already prunes unavailable volunteers so there is no
benefit in a model learning this behaviour. This reduces the non-assignments to 1,189,129 (9:1
split). To account for this natural class imbalance, each model is trained with the class weight
parameter set to ’balanced’. It is evident in figure 6.8 that using the ’balanced’ class rate can
greatly reduce the false negative rate at an acceptable cost to the prune percentage.

Page 29 of 54

(a) Effect on the false negative rate when using a
balanced class weight. Model 0 uses a balanced class
weight, model 1 uses the default class weight.

(b) Effect on the prune percentage when using a bal-
anced class weight. Model 0 uses a balanced class
weight, model 1 uses the default class weight.

Figure 6.8: Demonstration of the effect of using the ’balanced’ class weight parameter on a
stochastic gradient classifier with a ’log’ loss.

I explore the suitability of using the following classifiers for this task: stochastic gradient descent
(SGD) with log loss, Gaussian naive Bayes, Bernoulli naive Bayes, decision tree, random forest (RF),
and k-nearest neighbour. To make a comparison, I train each model with its default parameters
and the ’balanced’ class weight. I noted in preliminary experiments that models with a medium to
high false negative significantly degraded the objective function score. Because of this observation,
I’m most interested in models that minimize the false negative rate while maintaining a moderate
to high prune percentage.

To evaluate each model’s performance, I plot the decision threshold vs prune rate, decision threshold
vs false negative rate, false negative rate vs prune percentage and use these plots for comparison. I
found the Gaussian naive Bayes to be the worse performing model because surprisingly, varying the
decision threshold did not change its prune rate nor its false negative rate. The most suitable models
are the SGD and the RF classifiers. They both offer low false negative rates while maintaining a
relatively high prune rate. Their performance is compared in figure 6.9. Clearly, there is a trade-off
between the false negative rate and the pruning rate. The RF is capable of the greatest pruning
rate but ultimately, I decide to use the SGD model because it boasts an exceptionally low false
negative rate while maintaining a moderate prune percentage.

Finally, I hyper-parameter tune the model to achieve optimum performance. Typically the hyper-
parameters are found using a grid search algorithm that tries to find the parameters that maximises
a score function. I haven’t defined a suitable scoring function that balances the false negative rate
and the pruning rate so I opt to manually tune the model. I achieve this by training a series
of models with different values for the same parameter and plot the performance of each model
against the model with the best performing parameters. I found the optimal model parameters
for the SGD are a modified Huber loss function with an elastic net penalty, a maximum iteration
limit of 1000, and a balanced class weight. The most influential parameter is the class weight.
The optimal model and the data scaler are exported using the Joblib11 library’s dump function.
Writing the model and the scaler to a Joblib file means they can be efficiently loaded into Python
at a future time without needing to be refitted.

11github.com/joblib/joblib

Page 30 of 54

github.com/joblib/joblib

(a) SGD false negative rate vs prune percentage. (b) RF false negative rate vs prune percentage.

(c) SGD false negative rate vs prune percentage. (d) RF false negative rate vs prune percentage.

(e) SGD false negative rate vs prune percentage. (f) RF false negative rate vs prune percentage.

Figure 6.9: Comparison of a SGD model with a log loss vs a RF model. Both models are trained
using their default parameters and a ’balanced’ class weight. The plot data is computed by varying
each model’s decision threshold from 0 to 1 and recording the resulting prune percentage and false
negative rate.

Page 31 of 54

(a) The effect of varying the decision threshold on the average ob-
jective function score.

(b) The effect of varying the decision threshold on
the average false negative rate.

(c) The effect of varying the decision threshold on
the average prune percentage.

Figure 6.10: The performance of the tuned model when applied to individual schedules in the
validation set. The decision threshold is varied between 0.6 and 0.9 for figure (a) and is varied
from 0.5 to 0.95 in steps of 0.05 for (b) and (c).

6.5.3 Validation

Now that the model has been trained and tuned, I want to validate that it works well on individual
rosters because up to now the model has been tested on a concatenated version of the validation
data i.e the validation data has been treated like one massive schedule. Additionally, I can use the
validation results to determine the optimal decision threshold.

To perform the validation, I create an optimized scheduler that uses the previously created model to
prune input schedules. Each roster in the validation set is then solved with the optimized scheduler
multiple times with various decision thresholds. The resultant changes in objective function score,
false negative rate, and the prune percentage after running the solver are recorded. Last, I group
the scores by decision threshold and calculated the average score for each threshold.

The results of the validation are presented in figure 6.10. The overall performance is reasonable:
using a decision threshold greater than 0.85 yields an acceptable level of deterioration of the
objective function score and prune rate above 40%. It’s interesting to note that the average
prune rate of the individual schedules is much lower than the 60% prune rate of the amalgamated
schedules. The optimal decision threshold is 0.85; thresholds lower than this yield an unacceptable
increase in the objective function score.

Page 32 of 54

Chapter 7: Evaluation

The objectives of this project are to create a MIP solver that is suitable for volunteer schedul-
ing, develop a web application so that others can use the service, and optimize the service with
supervised search space pruning.

7.1 MIP Formulation of the NSP Algorithm Evalu-

ation

The MIP formulation of the NSP algorithm has gone through many iterations and each iteration
is evaluated before proceeding to the next stage as changing the formulation late into the project
would be detrimental. The formulation is evaluated on its ability to create rosters that have good
coverage, that assign volunteers with the most suitable skills to shifts, that have fair workloads,
and that can be used for a wide range of volunteer scheduling scenarios.

The formulation is evaluated in multiple steps. First, the solver must solve the Netsoc schedule
presented in figure 2.1. The solver can produce a perfect roster for this schedule: there is complete
coverage, no skill penalty, and each volunteer has a balanced number of shifts.

Next, I generate and solve a selection of small rosters with only a few workers and shifts. I check
each of the rosters to check that the roster is practical, usable, and of good quality. I also attempt
to manually improve the schedule by swapping shifts around and re-arranging them. I’m confident
the solver produces high-quality small schedules that can’t be manually improved.

Finally, I generate and solve a selection of large rosters. Because these rosters are quite large, I
only want to inspect them to ensure that the workload is balanced and that no shift is excessively
relaxed or assigned too many non-optimal volunteers. I noticed that an early iteration of the
formulation greedily assigned workers to shifts when the schedule was sparse and this resulted in
unbalanced workloads. This is corrected in the final formulation by allowing the skill penalty to
deviate slightly when performing the workload balancing optimization.

Overall, I’m confident that this MIP formulation provides high-quality rosters for this variant of
the NSP.

7.2 Supervised Search Space Pruning Model Evalu-

ation

The objective of the supervised search space pruning model is to reduce the average running time of
the solver without noticeably degrading the quality of the solution. Two experiments are conducted
to evaluate the performance of the model. The first experiment is concerned with evaluating the

Page 33 of 54

Figure 7.1: The performance of the optimized solver with an 85% decision threshold is displayed
in terms of prune percentage and percentage time reduction. The size of each bubble indicates
the time taken in minutes for the standard solver to compute the solution. Only instances from
the test set that take more than five minute to solve are included in the plot.

model’s overall performance; the second experiment is much smaller and is concerned with the
model’s performance on challenging instances.

Experiment 1

This experiment is conducted on the previously prepared test set of 50 typical schedules. It takes
32.4 hours to produce all 50 rosters using the standard solved. When using the optimized solver,
which pre-prunes the schedule using the search space pruning model, the solve time is cut by 47%,
to 17.1 hours. The schedules are pruned by an average of 43%. The longest-running task saw its
solve time reduced from 13 hours to just one hour, a reduction of 92%.

Of the 50 instances, the standard solver can produce rosters for 34 of the instances within five
minutes. The remaining 16 instances take an average of two hours and one minute to solve.
Using the optimized solver, the average solve time is reduced to one hour and four minutes. The
performance of the optimized solver on these medium- to long-running problems is displayed in
figure 7.1.

From figure 7.1, one can see there is an exponential relationship between the level of pruning
and the running time reduction: as the prune percentage increases, the running time reduction
increasing exponentially. Also, the level of pruning appears to have an almost bi-modal distribution
whereby nine of the instances are significantly pruned while the other seven saw little to no pruning
when using an 85% decision threshold.

Even though the pruning was quite high for many of the instances, the time reduction is moderate,
especially for small and simple instances. One reason for this could be that the performance of these
small and simple instances varies greatly depending on the solving technique is used by Gurobi.

Page 34 of 54

(a) The relationship between the prune percentage
and the change in objective function score.

(b) The relationship between the prune percentage
and the change in objective function score.

Figure 7.2: The change in solution quality when using the optimized solver. Objective function
score is the percentage difference between the score of the pruned solution and the optimal solution.
Only instances from the test set that take more than five minute to solve are included in the plot.

Mathematical optimizers like Gurobi use a variety of techniques and heuristics like branch and
bound, simplex algorithm, and greedy heuristics to solve integer programming problems [32]. It’s
possible that the standard schedule and the pruned schedule are solved with different techniques
or that the techniques used don’t particularly benefit for moderate pruning.

This running time is achieved without noticeably affecting the solution quality; the average objective
value of a pruned solution is increased by only 4%. Of the 50 instances, 38 are solved by the
optimized solver with no change to the objective function value.

Figure 7.2 illustrates the change in solution quality when using the optimized solver on medium-
to long-running instances. Most instances see little change in their objective function score. There
is one instance that has an optimal object score of one but the score of the predicted solution is
5 which explains the unusually high 70% change in objective function score.

It is evident from figure 7.2.a that there the objective function score degrades as a greater percent-
age of the problem is pruned away. By attempting to prune almost all the prune-able variables,
there is an increased probability of removing a variable that belongs in the optimal solution. This
is a consequence of using a fixed decision threshold. By implementing a dynamic threshold, the
pruning could be more controlled.

There isn’t a well-defined relationship between the solve time and the change in objective function
score; it appears that instances with a greater reduction in solve time have a greater change in
objective function score but more data is needed to support this observation.

Experiment 2

In experiment one, I observed that the instances that took the longest to solve often saw the
greatest reduction in running time, especially dense instances. A dense instance is a scheduling
problem with a high average shift staffing requirement; generally, they tend to be more challenging
to solve than sparse instances which have a low average shift staffing requirement.

In this experiment, I want to analyse the optimized solver’s performance on challenging long-
running instances. To explore this more, I conduct a small experiment. I generate fifteen instances
using the same scheme described in the previous chapter except I change the distribution of the
mean shift staffing requirement from N (0.5, 0.15) to N (0.8, 0.05). Empirically, I have noticed
that instances with a high mean shift requirement take much longer to solve so this should produced

Page 35 of 54

challenging instances.

Using the standard solver, six of the fifteen instances proved challenging to solve. It takes the
standard solver 13.6 hours to solve these six instances. The average running time of these six
instances is 2 hours and 16 minutes. Next, I resolve the six instances with the optimized solver.
It takes only 3.4 hours to roster the schedules which represents a 75% reduction in running time.
This has the effect of reducing the average solve time from 2 hours and sixteen minutes to just 34
minutes. This means the optimized solver can achieve four times the throughput of challenging
instances compared to the standard schedule.

The average running time reduction is 58% with the longest-running tasks receiving the greatest
running time reduction. The longest-running instance which ran for 7.5 hours could be solved in
one hour which represents an 86% reduction in running time. The average prune rate for these
instances is 61% and the change in objective function score was 9%. An important caveat to this
experiment is that the sample size is quite small and further testing should be performed with a
larger sample size.

Summary

Overall, the search space pruning model is a success. Experiment 1 shows that in typical cases,
the optimized solver reduces the running time of schedules by almost fifty percent which allows the
system to achieve double the throughput. Experiment 2 shows the optimized solver performs best
on long-running instances. A possible explanation for this could be that Gurobi’s powerful variety
of techniques and heuristics are efficient at solving sparse instances which would suggest why these
instances see a lower running-time reduction compared to the challenging instances which can see
running time reductions of up to 92%.

Page 36 of 54

Chapter 8: Conclusions and Future Work

8.1 Conclusion

Throughout the course of this project I have,

• Identified a variant of the nurse scheduling problem suitable for scheduling volunteers;

• Formulated the algorithm as a mixed-integer linear programming problem and implemented
it using the Gurobi mathematical optimizer;

• Created a scalable serverless web application with a simple Vue front end and a robust AWS
back end;

• Generated a realistic volunteer scheduling data set in the absence of a genuine data set;

• Optimized the solver using a search space pruning model to cut the average solve time in
half at almost no cost to the objective function score.

Ultimately, this project has successfully achieved its goals of creating a scheduling algorithm that
caters to the needs of volunteer organisations and creating a scalable, serverless web application
that utilises this algorithm to roster volunteers.

8.2 Future Work

Though this project has fulfilled its core and advanced requirements, there are still improvements
that can be made to the MIP formulation, the web application, and the supervised search space
pruning model. Additionally, the demonstrated success of the supervised search space pruning
model opens up more avenues of exploration.

8.2.1 MIP Formulation

This project uses a robust algorithm for scheduling volunteers but there are three improvements I
would like to make.

First, I would like volunteers to have the ability to express greater availability preferences such as
"not available", "available if needs be", and "available". This is a popular feature in Doodle which
would be beneficial for users of this application.

I would also like to offer the ability to set a minimum staffing level. In some cases, it may be
unacceptable to slack a shift below a certain threshold. This could be prevented by adding a new
hard constraint that prevents a shift from being slacked below its minimum staffing level.

Page 37 of 54

Last, I would like to implement a dynamic shift slacking penalty. In particularly challenging sched-
ules, the solver may need to significantly slack shifts across a track but instead of slacking each
shift a small bit, it is possible for the solver to greedily slack an entire shift. If a dynamic shift
penalty is implemented such that it is cheap to lightly slack a shift and expensive to excessively
slack it, this would balance how shifts are slacked.

8.2.2 Web App Improvements

At present, the AWS components are created, managed, and provisioned through the web con-
sole. Although using the console is acceptable for this project considering its time frame, if the
application wishes to see real-world use, it should be configured programmatically. It would be
straightforward to model the web application using the Serverless1 framework now that the applica-
tion has been constructed end-to-end and I have determined how the services need to be configured
to interconnect. The Serverless framework, which is different from the design paradigm, allows
AWS infrastructure to be described in a configuration file and launched using the Serverless frame-
work. The benefits of using this framework are that changes to the infrastructure can be tracked
through git and if the configuration files are made open-source, others can use them to launch
similar services.

Currently, the schedules are created by the organiser only. This can be improved by allowing the
organiser to share a schedule code with the volunteers so that they can input their availability
and skills. This would allow volunteers to self-schedule themselves. If this is implemented, the
organiser should be offered additional controls that would allow them to tweak volunteers’ skills
to improve the schedule feasibility.

The web application is controlled by a simple Vue front end. I would like to see this front end
improved to offer a greater user experience and to match the standard of its competitors. One
example would be to improve the schedule creation view to the standard of Doodle, which could
be achieved with packages like vuedraggable2.

I feel the user experience could be improved further with the creation of a mobile app. Since
this project uses Vue, the web application can be easily exported to Android and IOS using Vue
Native. Vue Native is a framework for creating cross-platform native mobile apps using JavaScript
and Vue. Most of the front end codebase can be reused. The most significant change would be
to modify the views so that they’re mobile and touchscreen-friendly. For frequent users of Quick
Roster, this could greatly improve their user experience.

Another useful feature would be calendar integration. I would like to add the ability for users
to export their individual roster to Google Calendar. This would allow them to view their shifts
alongside their other calendar events. A minor benefit of this is that users would not have to visit
the site to view their roster; this would reduce site traffic which in turn reduces the running cost
of the web application because web pages would not need to be served and there would be fewer
calls to: Cognito and S3.

Finally, Cognito supports a range of single sign-on (SSO) options like signing in through Google,
Facebook, Microsoft, etc. I would like to offer users the ability to sign in with a range of SSOs.
This would result in a frictionless sign-up process for the web application.

1www.serverless.com
2www.github.com/SortableJS/Vue.Draggable

Page 38 of 54

www.serverless.com
www.github.com/SortableJS/Vue.Draggable

Upper bound of Pruning = 80%

SafePrunePercentage(Max Prune) = 52%

P(being pruned) = [0, .9, .2, .5, .3, .4, .4, .2, .9, .2]

Sorted(P(being pruned)) = [0, .1, .2, .2, .3, .4, .4, .5, .9, .9]

52th Percentile = 0.4

Figure 8.1: An example of dynamic pruning. In this example the optimal decision threshold is 0.4.
Pruning above the upper bound is guaranteed to incur a slack penalty. The safe prune percentage
in this example is a function of the the maximum prune; it estimates than 52% of assignments
can be safely pruned. The decision threshold is then determined by sorting the probability of
assignment and finding the probability that corresponds to the 52th percentile; this probability is
the decision threshold that yields a 52% prune.

8.2.3 Supervised Search Space Pruning

Dynamic Classification Threshold

When evaluating the optimized pruner in experiment 1, I remarked that almost half of the long-
running schedules received little to no pruning at an 85% decision threshold. If the decision
threshold for these lightly pruned instances could be lowered, it would improve the overall perfor-
mance of the optimized solver. However, decreasing the decision threshold for all instances would
be detrimental to the average solution quality. One possible technique to remedy this problem is
to implement a dynamic classification threshold.

One approach to implementing a dynamic threshold is to map different classification thresholds
to various classes of instance. For example, one could map sparse instances to a low decision
threshold and dense instances to a greater threshold. This would require a lot of experimentation
to decide how to map instances to decision thresholds.

A simpler approach could be to decide the optimal pruning rate for an instance and find the decision
threshold which yields this level of pruning. The challenge with this approach is determining what
level of pruning can be safely performed without affecting the objective value. Figure 8.1 contains
an illustrative example of how dynamic pruning could be implemented.

Multi-stage Sparsification

A dynamic classification threshold isn’t the only method to eke out more performance from the
pruning model. Grassia et al. use multiple pruning stages to achieve greater pruning [2]. In each
stage, the researchers train a new classification model for elements that were not pruned by earlier
classification models. The benefit of this multi-stage sparsification is that each model can prune
elements that the previous model found difficult to classify. Applying this technique could yield an
even greater pruning performance.

Generalising Supervised Search Space Pruning to the NSP

The volunteer scheduling problem is different, but in many ways more straightforward than the
NSP. The assignment of volunteers is ultimately dictated by their availability and good quality
rosters can be produced thanks to volunteers’ flexibility. Typical NSPs must incorporate labour
laws and contractual rights into their formulation. The complexity is evident in the formulation of
the ANDROM which has 23 constraints that are defined by work regulation [14]. These additional

Page 39 of 54

constraints add extra complexity which can make schedules difficult to compute in a timely fashion.

I believe there is an opportunity to apply supervised search space pruning to these challenging
variants of the NSP to great effect. Specifically, there a MIP formulation and a set of benchmark
instances available for a popular variant of the NSP available on Scheduling Benchmarks3. I
believe with additional feature engineering and model exploration, there is an opportunity to attain
a remarkable performance improvement for this problem.

Specialised Models and Analysis Scheduling Difficulty

A popular technique for improving supervised models is to train specialised models for use on
certain instance types e.g dense, sparse, etc. It could be possible to improve the performance of
the optimized scheduler by equipping it with a model trained for sparse and challenging schedules.

Previously, I made the observation that challenging instances tend to have a high average shift
staffing requirement. However, this is just an observation. It would be valuable to analyse the
correlation between each of the previously devised features and the problem difficulty. This analysis
would enable specialised models to be trained to prune sparse and challenging instances.

Creation of a Genuine Data Set

As previously mentioned in the Data Considerations chapter, this project resorts to creating artificial
data sets to train the machine learning models. Users of Quick Roster who successfully create a
roster are asked if an anonymous copy of their roster can be retained to improve the quality of the
service. If the service proves to be popular, these schedules could be used to optimize the models
for genuine scheduling problems. Further to this, if users allow these anonymous schedules to be
made public, valid rosters could be published to data repositories like Kaggle4. Of course, this is
an extremely niche data set but it could be interesting to those experimenting with solving the
NSP.

3www.schedulingbenchmarks.org
4www.kaggle.com

Page 40 of 54

www.schedulingbenchmarks.org
www.kaggle.com

Acknowledgements

I would like to thank my supervisor Dr. Deepak Ajwani for sharing his invaluable expertise, insight,
and guidance with me.

Page 41 of 54

Bibliography

1. Burke, E. K., De Causmaecker, P., Berghe, G. V. & Van Landeghem, H. The State of
the Art of Nurse Rostering. Journal of Scheduling 7, 441–499. issn: 1094-6136. http:
//link.springer.com/10.1023/B:JOSH.0000046076.75950.0b (2020) (Nov. 2004).

2. Lauri, J., Dutta, S., Grassia, M. & Ajwani, D. Learning fine-grained search space pruning
and heuristics for combinatorial optimization. arXiv:2001.01230 [cs]. arXiv: 2001.01230.
http://arxiv.org/abs/2001.01230 (2020) (Jan. 5, 2020).

3. Office, C. S. QNHS Volunteering and Wellbeing https://www.cso.ie/en/releasesandpublications/
er/q-vwb/qnhsvolunteeringandwellbeingq32013/. (accessed: 03.12.2020).

4. Handbook of scheduling: algorithms, models, and performance analysis (ed Leung, J. Y.-T.)
OCLC: ocm55519835 (Chapman & Hall/CRC, Boca Raton, 2004). 1 p. isbn: 978-1-58488-
397-5.

5. De Causmaecker, P. & Vanden Berghe, G. A categorisation of nurse rostering problems.
Journal of Scheduling 14, 3–16. issn: 1094-6136, 1099-1425. http://link.springer.
com/10.1007/s10951-010-0211-z (2020) (Feb. 2011).

6. Miller, H. E., Pierskalla, W. P. & Rath, G. J. Nurse scheduling using mathematical program-
ming. Operations Research 24, 857–870 (1976).

7. Osogami, T. & Imai, H. Classification of various neighborhood operations for the nurse
scheduling problem in International Symposium on Algorithms and Computation (2000), 72–
83.

8. Bard, J. F. & Purnomo, H. W. A column generation-based approach to solve the prefer-
ence scheduling problem for nurses with downgrading. Socio-Economic Planning Sciences
39, 193–213. issn: 00380121. https://linkinghub.elsevier.com/retrieve/pii/
S0038012104000126 (2020) (Sept. 2005).

9. Burke, E., Cowling, P., De Causmaecker, P. & Berghe, G. V. A memetic approach to the
nurse rostering problem. Applied intelligence 15, 199–214 (2001).

10. Özcan, E. in Computer and Information Sciences - ISCIS 2005 (eds Yolum, p., Güngör, T.,
Gürgen, F. & Özturan, C.)red. by Hutchison, D. et al. Series Title: Lecture Notes in Computer
Science, 482–492 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005). isbn: 978-3-540-
29414-6 978-3-540-32085-2. http://link.springer.com/10.1007/11569596_51 (2020).

11. Kawanaka, H., Yamamoto, K., Yoshikawa, T., Shinogi, T. & Tsuruoka, S. Genetic algorithm
with the constraints for nurse scheduling problem in Proceedings of the 2001 Congress on
Evolutionary Computation (IEEE Cat. No. 01TH8546) 2 (2001), 1123–1130.

12. Dowsland, K. & Thompson, J. Solving a nurse scheduling problem with knapsacks, networks
and tabu search, 9.

13. Registered Irish Charities - Social and Economic Impact Report 2018, 32 (2018).

14. Burke, E. K., Curtois, T., Qu, R. & Vanden-Berghe, G. Problem Model for Nurse Rostering
Benchmark Instances, 29.

15. Chen, Y., Liu, A., Sciannella, E. & Zhang, A. A Comparison of Approaches to the Nurse
Scheduling Problem, 8.

16. Lin, X., Hou, Z., Ren, H. & Pan, F. Approximate Mixed-Integer Programming Solution with
Machine Learning Technique and Linear Programming Relaxation (Nov. 2019).

17. MIT. Learning-Augmented Algorithms https://www.eecs.mit.edu/academics-admissions/
academic-information/subject-updates-spring-2019/6890. (accessed: 04.12.2020).

Page 42 of 54

http://link.springer.com/10.1023/B:JOSH.0000046076.75950.0b
http://link.springer.com/10.1023/B:JOSH.0000046076.75950.0b
https://arxiv.org/abs/2001.01230
http://arxiv.org/abs/2001.01230
https://www.cso.ie/en/releasesandpublications/er/q-vwb/qnhsvolunteeringandwellbeingq32013/
https://www.cso.ie/en/releasesandpublications/er/q-vwb/qnhsvolunteeringandwellbeingq32013/
http://link.springer.com/10.1007/s10951-010-0211-z
http://link.springer.com/10.1007/s10951-010-0211-z
https://linkinghub.elsevier.com/retrieve/pii/S0038012104000126
https://linkinghub.elsevier.com/retrieve/pii/S0038012104000126
http://link.springer.com/10.1007/11569596_51
https://www.eecs.mit.edu/academics-admissions/academic-information/subject-updates-spring-2019/6890
https://www.eecs.mit.edu/academics-admissions/academic-information/subject-updates-spring-2019/6890

18. Mitzenmacher, M. A Model for Learned Bloom Filters, and Optimizing by Sandwiching.
arXiv:1901.00902 [cs, stat]. arXiv: 1901.00902. http://arxiv.org/abs/1901.00902
(2020) (Jan. 3, 2019).

19. Vassilvitskii, S. What Can ML Do For Algorithms? Speech to speech translation, 78.

20. Balcan, M.-F., Dick, T., Sandholm, T. & Vitercik, E. Learning to Branch. arXiv:1803.10150
[cs]. arXiv: 1803.10150. http://arxiv.org/abs/1803.10150 (2020) (May 16, 2018).

21. Kraska, T., Beutel, A., Chi, E. H., Dean, J. & Polyzotis, N. The Case for Learned Index
Structures, 16 (2018).

22. Purohit, M., Svitkina, Z. & Kumar, R. Improving Online Algorithms via ML Predictions, 10.

23. Kelleher, J. D., Mac Namee, B. & D’Arcy, A. Fundamentals of machine learning for predictive
data analytics: algorithms, worked examples, and case studies 595 pp. isbn: 978-0-262-02944-
5 (The MIT Press, Cambridge, Massachusetts, 2015).

24. Vinyals, O., Fortunato, M. & Jaitly, N. Pointer Networks. arXiv:1506.03134 [cs, stat]. arXiv:
1506.03134. http://arxiv.org/abs/1506.03134 (2020) (Jan. 2, 2017).

25. Supervised and Unsupervised Learning for Data Science (eds Berry, M. W., Mohamed, A.
& Yap, B. W.) (Springer International Publishing, Cham, 2020). isbn: 978-3-030-22474-5
978-3-030-22475-2. http://link.springer.com/10.1007/978-3-030-22475-2 (2020).

26. Probst, M., Rothlauf, F. & Grahl, J. Scalability of using Restricted Boltzmann Machines for
Combinatorial Optimization. arXiv:1411.7542 [cs]. arXiv: 1411.7542. http://arxiv.org/
abs/1411.7542 (2020) (Nov. 27, 2014).

27. Kaelbling, L. P., Littman, M. L. & Moore, A. W. Reinforcement learning: A survey. Journal
of artificial intelligence research 4, 237–285 (1996).

28. Dai, H., Khalil, E. B., Zhang, Y., Dilkina, B. & Song, L. Learning Combinatorial Optimization
Algorithms over Graphs. arXiv:1704.01665 [cs, stat]. arXiv: 1704.01665. http://arxiv.
org/abs/1704.01665 (2020) (Feb. 21, 2018).

29. Armbrust, M. et al. Above the Clouds: A Berkeley View of Cloud Computing, 25.

30. Jonas, E. et al. Cloud Programming Simplified: A Berkeley View on Serverless Computing,
35.

31. Vanhoucke, M. & Maenhout, B. Characterisation and Generation of Nurse Scheduling Prob-
lem Instances, 31.

32. Önal, H. First-best, second-best, and heuristic solutions in conservation reserve site selection.
Biological Conservation 115, 55–62. issn: 00063207. https://linkinghub.elsevier.
com/retrieve/pii/S0006320703000934 (2021) (Jan. 2004).

33. Group, N. N. Why You Only Need to Test with 5 Users Mar. 2000. https://www.nngroup.
com/articles/why-you-only-need-to-test-with-5-users/.

34. Lewis, J. R. IBM computer usability satisfaction questionnaires: Psychometric evaluation
and instructions for use. International Journal of Human-Computer Interaction 7, 57–78.
issn: 1044-7318, 1532-7590. http : / / www . tandfonline . com / doi / abs / 10 . 1080 /
10447319509526110 (2020) (Jan. 1995).

Page 43 of 54

https://arxiv.org/abs/1901.00902
http://arxiv.org/abs/1901.00902
https://arxiv.org/abs/1803.10150
http://arxiv.org/abs/1803.10150
https://arxiv.org/abs/1506.03134
http://arxiv.org/abs/1506.03134
http://link.springer.com/10.1007/978-3-030-22475-2
https://arxiv.org/abs/1411.7542
http://arxiv.org/abs/1411.7542
http://arxiv.org/abs/1411.7542
https://arxiv.org/abs/1704.01665
http://arxiv.org/abs/1704.01665
http://arxiv.org/abs/1704.01665
https://linkinghub.elsevier.com/retrieve/pii/S0006320703000934
https://linkinghub.elsevier.com/retrieve/pii/S0006320703000934
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://www.tandfonline.com/doi/abs/10.1080/10447319509526110
http://www.tandfonline.com/doi/abs/10.1080/10447319509526110

Chapter 9: Appendix

9.1 Link to the GitLab Repository

The code for this project can be found on the internal UCD Gitlab repository: https://csgitlab.
ucd.ie/creavt/final-year-project-submission

9.2 Full Feature Set

1. Number of workers.

2. Number of days.

3. Number of shifts.

4. Number of tracks.

5. Number of skills.

6. Staffing required

7. Sparsity of staff requirements describes what percentage of staff are required for a shift on
average.

8. Sparsity of staff availability describes what percentage of staff are available for a shift on
average.

9. Average number of skills of each worker.

10. Median number of skills of each worker.

11. Chi-square value of the number of skills of each worker.

12. Worker is available is a boolean that indicates if the worker is available for the current shift.

13. Worker skill penalty is the worker’s skill penalty if they are assigned to the current shift.

14. Worker maximum availability is the most amount of shifts the worker can be assigned to.

15. Chi-square value of the staffing requirements for the current day

16. Chi-square value of the staffing requirements for the current shift

17. Difference between average skill penalty and worker penalty

18. Difference between current worker’s skill penalty and the average avail worker’s skill
penalty

19. Worker skill penalty equals minimum penalty is a boolean that indicates if the worker
can be assigned to the current shift with a minimum penalty.

Page 44 of 54

https://csgitlab.ucd.ie/creavt/final-year-project-submission
https://csgitlab.ucd.ie/creavt/final-year-project-submission

20. Worker skill penalty Z-score indicates the number of standard deviations the current worker’s
skill penalty is from the average.

21. Skill rarity is the percentage of workers with this skill.

22. Skill demand is the percentage of assignments that require this skill.

23. Skill scarcity is the percentage of shifts that workers with that skill are available to do.

24. Difference between skill staffing and average skill staffing

25. Skill staffing Z-score is the number of deviations between the number of staff with a specific
skill that is required from the average.

26. Difference between available workers and staffing required across shifts

27. Difference between current available and average availability is the difference between
the average number of workers available for the current shift and the average number of
available workers for all shifts.

28. Worker availability Z-score is the number of deviations the current number of available
workers is from the average availability.

29. Maximum possible coverage indicates what percentage of the total amount of shifts could
be filled.

30. Total workers required to fill the roster indicates the number of workers required to completely
staff the roster.

31. Average shifts required is less than maximum is a boolean that indicates if the average
number of shifts per worker is than their maximum shift limit.

32. Worker’s available shifts is less than the worker’s maximum shift limit is a boolean
that indicates if a worker is available for fewer shifts than their maximum shift limit.

33. Linear programming value of the target is found by solving the problem as a linear
programming problem as opposed to a MIP problem. Linear programming solutions can be
found within seconds. The value of the target variable can be used to indicate what the MIP
value of the variable will be.

Page 45 of 54

9.3 Supplementary Figures

Figure 9.1: Heatmap of the ultimate features’ Pearson correlation coefficients.

Page 46 of 54

Figure 9.2: Roster for the SISTEM 2020 Conference

Page 47 of 54

Figure 9.3: Screenshot of the Quick Roster landing page.

Page 48 of 54

Figure 9.4: Screenshot of the Quick Roster sign-in page.

Page 49 of 54

Figure 9.5: Screenshot of the Quick Roster manage page.

Figure 9.6: Screenshot of the Quick Roster upload page.

Page 50 of 54

Figure 9.8: Timeline of the project work plan

Figure 9.7: Screenshot of the Quick Roster files page.

Page 51 of 54

9.4 Project Workplan

9.4.1 Completed Work

The following tasks have been completed in trimester one:

1. Define the Nurse Scheduling Problem Variant
For this project, I want to address a variant of the NSP that is suitable for volunteer schedul-
ing, is advanced enough to benefit from machine learning combinatorial optimization, and is
solvable in this project’s time frame. I carefully reviewed the most popular NSP variants and
learned which variants result in an NP-hard problem. I expressed the chosen variant using
De Causmaecker and Vanden Berghe’s NSP categorization notation.

2. Review Nurse Scheduling Problem Solving Techniques
I compared and contrasted many of the NSP solving techniques. I have opted to use an
integer programming approach as it was straightforward to create and proved to produce
optimal solutions. It’s only effective for solving small instances of the problem but I plan to
remedy this by augmenting it with machine learning.

3. Define a Mathematical Description of the Integer Programming Problem
Once I identified the variant of the NSP I wish to solve, I created a mathematical description
of the problem. This description is used to produce a mixed-integer programming formula-
tion of the problem. The mathematical description is included at the end of the appendix.
Although the implementation of the mathematical description has diverged from the orig-
inal description (because of incremental improvements), it is still a valuable resource for
understanding the problem this paper is addressing.

4. Experiment with Integer Programming Solvers
I implemented early versions of the problem using the Gurobi and FICO Xpress solvers. I
opted to use Gurobi as I preferred the Gurobi SDK and documentation to that of Xpress. I
expressed the mathematical description in terms of a Gurobi MIP formulation and I iterated
over this formulation to produce a competent NSP solver.

5. Research Cloud-native architectures
I explored AWS, Azure, and Google Cloud Compute for deploying the program. AWS is
the most cost-effective and simplest method to deploy to the cloud. I also have experience
using AWS which minimises the learning curve. After I selected AWS, I designed an AWS
architecture diagram for the system which is presented in figure ?? in the appendix.

6. Procure Training Data
I need sample nurse scheduling problem data to build a training set and to benchmark the
program. Many of the sample data sets used in the papers I have read no longer exist. I
was able to identify a suitable set of test data available from Scheduling Benchmarks1. The
data is complete with 255 instances and their optimal score for each instance.

I have created a near-complete decoder that can ingest the sample data and transform it
to work with the solver. Additionally, I have constructed a synthetic data generator but it
would need more improvement to produce realistic data.

1http://www.schedulingbenchmarks.org/

Page 52 of 54

9.4.2 Planned Work

1. Back End (2.5 Weeks)
Ideally, I will begin to develop the back end two weeks before trimester two begins. I will use
Ruby on Jets2 to produce a serverless AWS back end. Ruby on Jets creates most of the AWS
resources automatically using AWS CloudFormation. I will spend the majority of this stage
integrating the solver into a Fargate container and configuring the Lambdas to pass data to
and from Fargate. The remainder of the time is used to configure the web application.

The back end is made up of seven components:

• AWS Cognito allows administrators and users to easily access the roster maker.

• Route 53 offers some DNS niceties and routing to static resources.

• S3 stores static site resources and complete schedules.

• API Gateway directs requests to the appropriate Lambda.

• Lambdas serve site content and run the application.

• The NSP solver is integrated into a Fargate container. Fargate containers are more
apt than Lambdas for long-running, resource-intensive tasks.

• CloudWatch logs the application and records metrics. It can be used to scale the
application under high load.

I acknowledge working over the Winter break is aspirational. If I am unable to allocate the
time to work on the back end before the term, I will comprise the web application. A cloud
back end is not an essential component of the project. In lieu of a web application, I can
produce a local application by wrapping the Gurobi solver in a GUI.

2. Data Preparation (Two Weeks)
I will spend the first week is testing out the NSP sample data decoder I built in trimester
one, generating solutions to the data, and manually verifying solutions for small instances of
the problem. Additionally, the Gurobi solver may require minor revisions.

The second week is spent converting the optimal schedules into labelled data which can
be used to train machine learning models. The labeled data must be structured so that
a machine learning model can learn which volunteer features result in an assignment to a
particular type of shift.

3. Machine Learning (Six Weeks)
Two weeks are allocated to feature engineering. I will perform feature identification to create
a collection of features that could be used to predict whether a volunteer is scheduled for a
particular shift or not. If I have many features, I will perform feature selection techniques
like wrapper, and filter selection to find a subset of the most influential features.

One week will be spent training and tuning the model. This involves experimenting with
machine learning classifiers such as k-nearest neighbours, decision trees, naive Bayes, etc to
find the classifier with the best performance. Once I have chosen a classifier, I will optimize
the model further by performing parameter tuning.

A further three weeks are required to evaluate the model. Models will be evaluated using
three metrics. First, the query time, that is, the time to compute the problem’s features.
Ultimately I would like the machine learning model to speed up the overall time to schedule
volunteers; for this, the machine learning model must be quick at computing the problem’s
features.

Second, I want to know what effect the model will have on the quality of the solutions. To
evaluate this, I will measure the loss in the objective function score i.e the degradation of

2https://rubyonjets.com/

Page 53 of 54

the solution quality. Additionally, I will manually verify that the solutions to small instances
of the problem are adequate.

Last, I want to compare the accuracy of the predicted schedule to the optimal schedule. A
scheduling problem can have a number of optimal solutions so the accuracy can vary greatly.
But I still believe this could be an interesting evaluation metric to explore.

4. Contingency (Two Weeks)
Two weeks are set aside as a contingency.

5. User Interface & User Experience (Two Weeks)
I have allowed one week to create the user interface. I have decided a beautiful user interface
and an intuitive user experience can not be achieved in the time frame of this project. Instead,
I will use Bootstrap3 to produce a sensible but plain front end that allows organisers to create
schedules and volunteers to manually enter their availability.

I have allocated a week to conduct two user tests. First, up to five users [33] will be invited
to test the application and provide their input. I will correct any bugs or basic design flaws
identified in this test. The second user test will use a larger testing pool. Each user will use
the application and complete a questionnaire.

I intend to use IBM’s Computer System Usability Questionnaire (CSUQ) [34] to gather user
feedback. The CSUQ is designed to help software practitioners measure users’ satisfaction
with the usability of computer systems. CSUQ consists of nineteen statements where testers
indicate how strongly they agree or disagree with each statement. I may append additional
questions asking testers’ opinions on specific elements of the application.

6. Report (Five Weeks)
Towards the end of the trimester, I can begin the final report. My personal preference is to
write the report iteratively over five weeks as opposed to blocking off two-three weeks to
write the report. I can write more easily this way. The report will be written concurrently
with project development. The final week is entirely dedicated to report writing.

3https://getbootstrap.com/

Page 54 of 54

	Project Specification
	Core requirements
	Advanced requirements

	Introduction
	Related Work and Ideas
	Volunteer Rostering Applications
	Scheduling Applications
	Nurse Scheduling Problem
	Machine Learning Combinatorial Optimization
	Learning-Augmented Algorithms
	Machine Learning Combinatorial Optimization Techniques
	Supervised Pruning

	Serverless Applications
	Summary

	Mixed-Integer Programming Formulation of the NSP
	Overview
	Mixed Integer Programming Formulation

	Data Considerations
	Overview
	Schedule Generation
	Scheduling Benchmarks
	User Volunteered Schedules

	Methodology and Implementation Details
	Nurse Scheduling Problem Solver
	Back end
	Creating the Scheduling Service
	Automating the Scheduling Service
	User Management
	Front End Infrastructure
	Advanced Changes

	Front end
	Data Preparation
	Preparing the Data
	Labeling the Data

	Machine Learning
	Feature Engineering
	Training
	Validation

	Evaluation
	MIP Formulation of the NSP Algorithm Evaluation
	Supervised Search Space Pruning Model Evaluation

	Conclusions and Future Work
	Conclusion
	Future Work
	MIP Formulation
	Web App Improvements
	Supervised Search Space Pruning

	Appendix
	Link to the GitLab Repository
	Full Feature Set
	Supplementary Figures
	Project Workplan
	Completed Work
	Planned Work

