
Position Based Dynamics
Team 32

Thomas Creavin, Clément Jambon, Manuel De Prada Corral, Marius Debussche



Algorithm & Implementation



Reminder on PBD and our implementation

Input: a number n of quads (initialized as rectangles) each with two 
side-lengths, an initial position and rotation for each rectangle, a 
simulation duration T and a step size dt (and additional simulation 
hyperparameters)

Output: the trajectory of each vertex of the quads subject to 2 types of 
constraints: constitutive constraints (per-quad stretching & shearing) and 
collision constraints (vertex-to-edge & edge-to-edge)

Main takeaways: 
● PBD targets efficiency and plausibility
● The "solver" is a purely iterative algorithm (not a linear solver!)
● constraint projections are O(n) while detection is O(n²)
● every update is performed sequentially (cf. Gauss-Seidel 

analogy)
● although deterministic w.r.t. the initial conditions, simulations 

are highly heterogeneous (e.g., collisions are sparsely satisfied)
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Validation

n=10 n=50 n=100

4



Analysis



Cost analysis
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Cost analysis

After a manual count of each function:

Function Flops

add_toy_velocity 4n

apply_external_forces 8n

damp_velocities 97n

init_simulation 30n + 8

inside_quad_test 60

integrate_velocities 16n

ray_quad_intersection ~61

Function Flops

ray_segment_intersection ~14

shearing 60

stretching 120

toy_constraint 16

update_collision_constraint 1065

update_midpoint_constraint 1912

update_state 16n

Called O(n²) Called O(n²) if generating constraints every 
solver loop ( O(n) otherwise ) 7



Two granularities of analysis

1. Macro-benchmarks on real simulation scenarios
● Auto-generated simulation scenarios (for each input size)
● As constraints (e.g., collisions) are not always satisfied, we use a fine-grained 

telemetry to record events in a first execution pass; this allows to 
accurately determine the number of flops. We then run the simulation again 
a second to time to record the accurate runtime. 

2. Micro-benchmarks to finely identify the benefits of our optimizations
● Unit-test style performance measurement, robust and isolated.
● Runs on synthetic data.
● Ensures output consistency across all implementations.
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Identifying bottlenecks
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Identifying bottlenecks
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Identifying bottlenecks
O(n²)!!!
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Memory analysis: compute-bound

● Memory profiling using Linux Perf 
Event (LPE) headers.

● Results: miss rate in bottleneck code is 
close to 0.

● All data fits in L1 cache:
○ 190 quads * 264 bytes per quad = 50KB
○ Experiments on i7 1165G7, L1 cache of 48 

KB
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Rooflines

● Roofline plot confirms that we are 
completely compute-bound.

● Bottleneck functions have high 
operational intensity.
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Performance & -ffast-math
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Performance & -ffast-math
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Optimizations



Overview

● Flops reduction
● Precomputation:

○ determine collisions before the projecting constraints
○ precomputing reused values in generate_collision_constraints

● Improved data structures
○ AOS to SOA
○ storing precomputed collision records in lightweight buffers

● Vectorization
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Failed optimizations:

● optimize the power functions (mostly powers of 2, 4 and 6) in collision 
constraint projections but already heavily optimized in libc

● scalar replacement in the collision constraint projections, no significant 
speed-up
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AOS to SOA
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Reducing the flops

Function Flops

update_collision_constraint 1065

update_midpoint_constraint 1912

Function Flops

update_collision_constraint 484 (45%)

update_midpoint_constraint 595 (31%)

After reduction
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Reducing the flops: instruction count

update_collision_constraint

Compiler 
flag level

Before 
reduction

After 
reduction

0 4046 1332

1 1531 741

2 1128 482

3 1128 386

update_midpoint_constraint

Compiler 
flag level

Before 
reduction

After 
reduction

0 6354 1661

1 1401 704

2 729 434

3 1014 434

Compiler: GCC 11.3

0: -O0 -mno-fma -fno-tree-vectorize
1: -O3 -march=native -mno-fma -fno-tree-vectorize
2: -O3 -march=native -ffast-math -fno-tree-vectorize
3: -O3 -march=native -ffast-math 21



Reducing the flops
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Precomputing collisions

O(n²)!!!

collision records stored in lightweight 
buffers upon detection
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Precomputing collisions
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New bottleneck
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New bottlenecks: Generating Constraints Breakdown
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New bottlenecks: Solver Loop Breakdown

27



Vectorization

● Our vectorized version shows a
3.75x improvement in
microbenchmarks.

● Notably faster than auto-vectorization
(compiler)
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Precomputing reused values in generate_collision_constraints
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New rooflines
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● We are still mostly compute-bound
● Vectorization significantly boosts performance.
● Auto-vectorization is not able to improve over scalar 

performance.



Runtime (in ms)
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We made PBD significantly faster: a 100x speed-up 
between the naive implementation and full optimizations! 🎉




