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ABSTRACT

The two-language problem is ever prevalent in the sci-
entific computing domain. Thanks to its simplicity, Python
is widely used for prototyping and scripting, whereas low-
level languages like C are indispensable when performance
is key. The Julia programming language claims to solve
the two-language problem. It offers a high-level syntax for
fast prototyping while at the same time making it possible
to achieve high performance. In this paper, we evaluate Ju-
lia’s overall effectiveness. We implement and optimize a
diverse set of microbenchmarks from the PolyBench bench-
mark suite in both C and Julia, for CPU as well as GPU, and
compare performance and development experience1. We
find that Julia delivers on its claims, providing a superior
development experience compared to C, with performance
falling behind by only a few percentage points in general.

1. INTRODUCTION

Motivation. High-performance computing has long relied
on the formidable speed of C, despite its trade-off in expres-
siveness. In recent years, Python has gained prominence
despite its inherent performance limitations, particularly in
domains like machine learning and data science, thanks to
its simplicity and rich ecosystem. The Julia programming
language emerges as a unique solution to this two-language
problem [1]. Julia claims to deliver the performance of C
and the expressiveness of Python at the same time, thus it
presents itself as a compelling choice in the scientific com-
puting domain.

As the computing landscape evolves, GPUs are assert-
ing their significance, notably in machine learning where
they play a pivotal role. As NVIDIA GPUs currently dom-
inate the market, NVIDIA’s CUDA framework dominates
the space of GPU kernel development. CUDA is designed
to work with languages like C and C++, and is used by
many software libraries to harness the power of GPUs. For

1https://github.com/Zhurgut/DPHPCProject

Julia, the CUDA.jl package has been developed, which en-
ables developers to write kernel functions that execute on
the GPU in Julia.

This paper explores the extent to which Julia’s perfor-
mance matches that of equivalent C programs and whether
Julia facilitates a Python-like development experience both
for CPU and GPU code. To address these questions, we port
a set of eight diverse benchmarks from the PolyBench suite
to both C and Julia and compare their performance. We fur-
ther compare our versions against the NPBench [2] suite to
gauge Python’s performance in a broader context.

Related work. Existing research has extensively ex-
plored the development of the Julia language and its com-
petitiveness in the HPC space. Among them, [3] investi-
gates Julia’s performance for various machine learning al-
gorithms and finds that it closely rivals C, beating out other
languages like Fortran and Go and demonstrating the lan-
guage’s competitiveness. As for its suitability for HPC,
these researchers [4] achieved great success in writing Julia
code to target the A64FX processor, Fujitsu’s processor for
supercomputers. They found that their MPI (Message Pass-
ing Interface) applications performed nearly identically to
their C implementations. They herald praise for the boost in
scientific productivity, particularly when developing generic
numerical code that can effortlessly use different numerical
data types without sacrificing performance.

[5] compares C and Python implementations of the Poly-
Bench benchmarks. They focus on polyhedral optimiza-
tions to speed up the Python version. Additionally, works
like [6] call for the use of a general-purpose high-performance
language in scientific computing to enable more non-experts
to contribute to this increasingly performance-demanding
field. They demonstrate through a series of examples how
naive Julia implementations of algorithms that leverage the
GPU can achieve great performance with ease.

Our work takes this one step further by directly evalu-
ating Julia’s performance, both on CPU and GPU, against
its rivals C and Python (NumPy) as well as speaking to
our experience developing and optimizing code in these lan-
guages.



2. BACKGROUND

PolyBench. The Polyhedral Benchmark Suite (PolyBench)
is a collection of micro-benchmarks from various domains
[7].

NPBench. [2] This suite benchmarks scientific Python/
NumPy code, including PolyBench benchmarks. It utilizes
a range of NumPy-accelerating compilers and frameworks
to enhance the performance of Python codes.

CUDA. is a parallel computing platform and application
programming interface (API) developed by NVIDIA [8]. It
enables developers to leverage the parallel processing power
of NVIDIA GPUs for general-purpose computing tasks, al-
lowing for efficient acceleration of compute-intensive appli-
cations by offloading parallelizable workloads to the GPU.

Julia. [1] Julia is an open-source, performance-oriented,
high-level programming language developed at MIT, de-
signed from the outset to compete with the performance
of C while being as expressive as Python. Julia leverages
LLVM [9] to produce performant code. The CUDA.jl [10]
package leverages Julia’s CPU compiler infrastructure to
seamlessly integrate GPU kernel development for NVIDIA
GPUs into the Julia language.

3. BENCHMARKS AND OPTIMIZATIONS

In this study, we selected eight benchmarks from the Poly-
Bench suite to transpose. For each benchmark, we imple-
mented and optimized versions in both C and Julia, for both
CPU and GPU. We chose a large number of benchmarks
for the context of this project. This makes it possible to get
a broader understanding of Julia’s performance characteris-
tics. On the other hand, this also means our optimization
efforts have by no means been exhaustive, and there is still
room for improvement as far as performance is concerned.

Each benchmark is introduced briefly, accompanied by
concise descriptions of the effective optimizations applied
during the implementation process.

COVARIANCE. This benchmark computes the empiri-
cal covariance matrix given a data matrix. It is computed by
mean-adjusting each column, that is, computing the mean
of each column and subtracting it from each value and then
performing a matrix multiplication. The matrix multiplica-
tion operation dominates the majority of the runtime. It is
bottlenecked by inefficient memory access. To overcome
this, we transpose the data to reduce cache misses and use
memory-concise access patterns. We achieve additional speed-
ups by using accumulators and fusing smaller kernels. We
gain slight improvements using the Julia Single Instruction,
Multiple Data @simd and @inbounds macros.

DOITGEN. This benchmark is used in multiresolution
analysis kernels and executes a sequence of in-place matrix-
matrix multiplications along the last dimension. Its per-

formance characteristics vary between compute-bound and
memory-bound depending on its input parameters nr, nq,
and np. Julia’s column-major order yields an advantage in
the straightforward implementation. Notable optimizations
include precomputing a temporary variable, resulting in a
sizeable improvement in the C implementation, and opti-
mizing memory access patterns through coalescing, yield-
ing a significant enhancement for both Julia and C. A slight
speed-up for Julia is achieved by removing bounds checking
for memory accesses with the @inbounds macro. By ad-
justing and applying well-known optimizations for matrix-
matrix multiplications like the usage of shared memory to
this similar problem, further improvements are likely.

FLOYD-WARSHALL. The FLOYD-WARSHALL algorithm
solves the All Pairs Shortest Path (APSP) problem in a graph.
The naive implementation rests on a straightforward paral-
lelization strategy that iteratively employs a 2D thread grid
for every node k, where each thread calculates the detour
via node k for a specific source-destination pair. This is
primarily limited by the need to serially iterate over every
node k which results in suboptimal memory accesses. Here
again, C’s row-major memory layout leads to its straight-
forward implementation performing worse and the first no-
table optimization is transposing the thread index. Apart
from that, optimizations like reducing branch divergence
and disabling bounds checking in Julia yield only minimal
improvements. A considerable speed-up for both C and
Julia is only achieved when implementing a three-staged
blocked version of the algorithm following the approach
presented in [11].

General Matrix Multiplication (GEMM). This bench-
mark serves as a fundamental component for various op-
erations in neural networks. It is defined as the operation
CM×N = α · (AN×K · BK×M ) + β · CM×N . Its opti-
mization is challenged by efficient memory access. Some
noteworthy optimization techniques include transposing the
matrices, using accumulators, loop unrolling, SIMD, and
global memory coalescing. Among these, the most impact-
ful optimizations, include loop unrolling in Julia and using
column-major order in C.

SYRK. Symmetric Rank-K Update. The operation C =
α(AAT ) + βC is performed, where matrix A has signifi-
cantly fewer columns (K ≪ N ). On GPU, each thread is
tasked with computing the inner product between two rows
of A, emphasizing the optimization of memory access pat-
terns for enhanced efficiency.

JACOBI-2D. This benchmark implements a 2-D Jacobi
stencil computation on a square matrix AN×N . With the
matrix only being updated at the end of the iteration, each
matrix element is averaged together with its four closest
neighbours. This procedure is repeated a set number of
times. Parallelizing this routine for GPU is straightforward,
as using a second matrix to cache the previous state al-



Fig. 1. Performance Comparison of the best CPU version for C, Julia, and NPBench. Performance is computed as 1
Time and

re-scaled such that the overall best version for each benchmark achieves 100%. Our Julia versions achieve good performance,
usually quite close to their C equivalents, and sometimes even compete with existing library implementations.

lows for a full iteration of the stencil computation to be per-
formed all at once, without any in-loop dependencies. Fur-
ther optimizations would require changing the stencil com-
putation entirely to improve locality, thereby also introduc-
ing complex dependencies. On CPU, unrolling and reorder-
ing brings the Julia performance on par with C (where this
is done by GCC automatically).

Lower–Upper (LU) Decomposition. This benchmark
implements LU decomposition on a square matrix AN×N .
The algorithm implements Doolittle’s method [12] to itera-
tively calculate one row of the upper triangular matrix fol-
lowed by a row of the lower triangular matrix until A is
exhausted. Parallelizing the LU decomposition algorithm
for GPU poses challenges primarily linked to potential race
conditions. The intricate dependencies within the nested
loops make it difficult to parallelize efficiently, as simul-
taneous updates to matrix elements by multiple threads may
result in data inconsistency. The most high-performant op-
timization technique in both Julia and C is dividing the core
loop into two kernels, effectively addressing lower triangu-
lar and upper triangular matrix updates separately to prevent
race conditions during parallel execution [13].

TRISOLV. This benchmark solves a system of linear
equations where the coefficient matrix is lower triangular.
The key challenge for this benchmark is handling the inter-

loop dependency that arises from forward-substituting each
variable in the equation. The initial naive GPU implemen-
tation performed significantly worse than the CPU variant
because it didn’t parallelize well. Some Basic optimisations
are necessary so that the GPU implementation can match
the speed of the CPU variant. To improve the performance
of the GPU implementation further, we fuse the forward-
substitution and the scalar update into one kernel. This
avoids the cost of copying the data to and from the CPU
to update a single value each iteration. Additionally, we
gain smaller speed-ups from using the Julia @inbounds
and @fastmath macros.

4. EXPERIMENTAL RESULTS

Experimental setup. We use an Intel 7700K CPU (4.5GHz)
and a NVIDIA 1080Ti GPU to collect our measurements.
C codes are compiled using gcc 10.5.0 with flags -O3
-march=native. To measure execution time, we use
clock gettime(CLOCK MONOTONIC RAW) in C and
time ns() in Julia. NPBench always collects 10 mea-
surements for the Python versions. We opt to collect up to
200 to get narrower confidence intervals. Plots are based
on the empirical median runtime. The error bars denote the
95% confidence intervals for the median which are calcu-



Fig. 2. Performance Comparison of Julia against the different NPBench frameworks on CPU. Performance is computed as
1

Time and re-scaled such that the best version for each benchmark achieves 100%. Unlike the various Python frameworks,
Julia manages to deliver high performance consistently across benchmarks, if not through our custom versions, then thanks
to its optimized standard library implementations.

lated according to [14], pages 32, 313.
Unlike C and Python, Julia stores multidimensional ar-

rays in column-major order and so we transpose the bench-
mark input matrices where necessary. This is done before
running the measurement to facilitate one-to-one compar-
isons between the C and Julia versions.

We used the following problem sizes when collecting
the timing measurements.

COVARIANCE M=2000 N=2400
DOITGEN NR=250 NQ=280 NP=320

FLOYD-WARSHALL N=1400
GEMM NI=2000 NJ=2200 NK=2400

JACOBI-2D TSTEPS=300 N=1600
LU N=600

SYRK M=1600 N=2000
TRISOLV N=14000

Julia Library Versions. Julia ships with the extensive
LinearAlgebra and Statistics packages as part of its stan-
dard library. We use these packages to implement library
versions of our benchmarks where possible. These ver-
sions serve both as a reference for peak performance but
also highlight Julia’s focus on providing high performance

for scientific computing. It is incredibly easy in Julia to
achieve state-of-the-art performance, without even needing
to install a package.

These libraries are optimized for single-core CPU per-
formance. The CUDA package extends much of the func-
tionality from the LinearAlgebra package with respective
equivalents, optimized for GPU. It is thus possible to write
code that runs on GPU using a high-level syntax, forego-
ing the need to write custom kernels. Here is an example
of how we implemented the library version for the COVARI-
ANCE benchmark on GPU:

1 function cov(m, n, D::CuMatrix{Float64})
2 mean = 1/n .* sum(D, dims=1)
3 D .-= mean
4 return 1/(n-1) .* (D’ * D)
5 end

We use this high-level approach to implement library
versions for GPU. While we expect the CPU library ver-
sions to perform near optimally, this approach can cause
significant chunks of performance to be left on the table, as
operations are performed one after the other, even when they



Fig. 3. Performance Comparison of the best GPU version for C, Julia and NPBench. Performance is computed as 1
Time and

re-scaled such that the overall best version for each benchmark achieves 100%. Julia kernels usually achieve very similar
performance to their respective C counterparts.

could in theory be fused into a single kernel. This perfor-
mance loss can be seen in Fig. 3, where library versions for
both COVARIANCE and SYRK perform significantly worse
than our custom kernels. Nevertheless, many applications
enjoy a large speedup when porting a CPU implementation
to a GPU one in this manner, with very little development
overhead.

CPU Performance Results. We find that for CPU, Ju-
lia can generate code that is as fast as C code effortlessly.
Julia offers macros such as @inbounds to remove bounds-
checking in arrays, @views to convert array slices into ar-
ray views and @. to vectorize code, which causes function
calls to be fused and executed in a single loop. With judi-
cious usage of these macros, it is often possible to convert a
pseudo-code-style prototype into a performant, allocation-
free program with ease.

We see in Fig. 1 how our Julia versions can keep up with
and sometimes even beat out C. It has to be noted that we fo-
cused on developing the GPU versions, so the performance
of different languages and versions is largely limited by op-
timization effort. Nevertheless, we still show that Julia can
produce code with similar performance to C. An excellent
example of this is the LU benchmark in Fig. 1: the naive
triple loop implementation in Julia is only slightly behind
its C equivalent and achieves about 60% of the performance

of the LU library call. Note that in Fig. 1, the NPBench im-
plementations for GEMM and DOITGEN use the @ operator
for matrix-matrix or matrix-vector multiplication, which is
why only our library implementations are able to compete
with NPBench for these two benchmarks.

Fig. 2 compares Julia against the various Python frame-
works implemented in NPBench on CPU. Python usually
relies on C libraries such as NumPy for performance. This
approach does not always offer the required flexibility as the
desired computation might not be feasible through library
calls alone. Hence, there are many frameworks that aim
to accelerate Python programs or compile them to efficient
code. NPBench offers a great opportunity to compare Julia
against this “fast Python”. We can see in Fig. 2 that each
framework can produce great code for some benchmarks
but none perform well across all our benchmarks. Julia on
the other hand consistently delivers great results. Where
Python uses NumPy for matrix-matrix multiplication, such
as in GEMM and DOITGEN, Julia offers its own library ver-
sions to match, and when the code is written with nested
loops and array slices, our custom Julia versions never fall
far behind even the best NPBench counterpart.

GPU Performance Results. Our evaluation primar-
ily focused on GPU benchmarks, revealing varied perfor-
mance levels across our custom C and Julia implementa-



tions, especially when compared to NPBench and Julia’s li-
brary versions. As can be seen in Fig. 3, COVARIANCE,
FLOYD-WARSHALL, LU, SYRK and TRISOLV significantly
outperform the GPU NPBench versions. COVARIANCE and
SYRK also show a noticeable improvement over the Julia li-
brary implementation. However, in the case of GEMM and
JACOBI-2D, our C and Julia implementations lag behind
NPBench, while the DOITGEN versions align closely with
NPBench’s performance.

It’s crucial to note the inconsistent performance of NPBench
across different frameworks. Although dace gpu variants
perform best in most benchmarks among the different Python
versions, they fall short in tasks like LU and TRISOLV where
CuPy is better. This inconsistency underscores the potential
variability in Python-based GPU performance that does not
come with Julia or C.

Our findings indicate that, across all benchmarks, Ju-
lia’s custom versions generally parallel the performance of
their C counterparts, albeit with some minor discrepancies.
Generally, the Julia versions perform slightly worse albeit
within a range of less than 15% performance loss (Excep-
tions: TRISOLV - 37% performance loss, COVARIANCE -
27% performance loss). For JACOBI-2D, Julia even pro-
vides a performance gain of 194%, however as the JACOBI-
2D versions are still very basic and also perform worse than
the NPBench implementation, this suggests there is still sig-
nificant room for improvement left. These results critically
address our research query regarding Julia’s GPU perfor-
mance when compared with C, highlighting Julia’s capabil-
ity to deliver comparable results to C, with only marginal
losses in most cases.

Julia and Productivity. In the realm of Julia and pro-
ductivity, certain nuances of the language may pose initial
challenges for users. The 1-based indexing and the column-
major storage order for n-dimensional arrays, diverging from
the conventions in many contemporary languages, require a
period of adaptation.

Julia’s high-level syntax, designed for expressiveness
and readability, may not always align seamlessly with per-
formance optimization goals, particularly in the context of
GPU kernels. To address this, users often incorporate macros
such as @inbounds and @view to ensure Julia generates
more lightweight kernel code, akin to the default behavior
in languages like C. These macros are crucial not only for
GPU development but also on CPUs, ensuring the produc-
tion of allocation-free code.

One distinct advantage of Julia lies in its memory man-
agement, offering a more user-friendly experience compared
to C. Julia namely is a garbage-collected language, the pro-
grammer does not have to free memory manually like in
C. This convenience contributes significantly to overall pro-
ductivity, allowing developers to focus more on algorithmic
aspects rather than intricate memory handling.

Julia simplifies the CUDA installation process, making
it remarkably straightforward. With a simple package ad-
dition, CUDA functionality becomes seamlessly integrated,
even on personal laptops. Additionally, Julia provides a ba-
sic yet functional built-in CUDA profiler, offering a con-
venient tool for performance analysis during development.
These aspects collectively make Julia an appealing choice,
not just for its high-level syntax but also for the ease it
brings to GPU development and memory management.

Julia’s CUDA documentation, though generally good,
lacks the comprehensive detail found in CUDA C. Addition-
ally, resource availability for CUDA in Julia such as blog ar-
ticles, StackOverflow discussions and GitHub repositories,
though steadily growing, are more extensive for CUDA C.

Julia’s CUDA.jl package also does not interface with all
CUDA functionality. E.g. support for special floating point
types is very limited. As a result, CUDA C is still indis-
pensable when the goal is to achieve the absolute best per-
formance possible.

5. CONCLUSIONS

In conclusion, Julia emerges as a compelling choice for prac-
titioners seeking to write performant code that leverages
GPU capabilities. It can indeed provide C-like performance
and excels in offering a Python-like developer experience.
For the development of custom kernels, Julia provides a
more seamless and iterative process, delivering performance
akin to C. However, the Julia ecosystem, while rapidly grow-
ing, still lacks the maturity and breadth of resources avail-
able for established languages like Python and C. In essence,
Julia strikes a balance by providing a versatile environment
where performance and ease of development coexist, mak-
ing it a valuable tool for GPU-accelerated computing tasks.

Possible future works include a more thorough analysis
of why some Julia benchmarks fall short of their C counter-
parts and whether this reveals a general pattern or whether
it is simply an artefact of those problems or a shortcoming
in our optimization techniques. Another direction would be
the integration of Julia into the NPBench framework so that
it can be easily compared to NumPy/Python on a variety of
scientific benchmarks.
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