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1 Background and Motivation

» Deploying a new policy can be costly and time-consuming.

» Frequent deployment is not suitable for robotics [1], healthcare [2],
and recommender systems [3] applications due to risks and costs.

* New algorithms with theoretical guarantees have been proposed [4]
to achieve good policies in a few deployments.

2 Problem Statement

An algorithm has deployment complexity K if, for an arbitrary MDP, the
algorithm can:

* Return optimal policy with probability after K policy deployments;
» Collect trajectories in each deployment with a constraint that is

polynomial in standard parameters.

For this setting, we're concerned with a time-dependent episodic
linear MDP. Deployment complexity here depends on the dimension d
of the feature mapping ¢ and time horizon H.

Our primary goal is to implement an RL agent that can learn a good
policy while only using approx. 10 policy deployments based on the
algorithms in Huang et. al. [4].
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Figure 1: An Abstraction of Learning Process of Online RL Setting
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3 Algorithm and Methods

Algorithm 1 from Huang et. al. [4]:

* Deterministic policy setting.

» Layer-by-layer exploration strategy.

» Theoretically optimal for setting: O(dH) deployments.
Our implementation:

» Environment: FrozenLake, OpenAl Gymnasium library.

* First-ever implementation of this algorithm, including end-to-end
training and deployment of the learned policy.

+ Can learn an optimal policy in as few as 10 deployments.
Algorithm 2 from Huang et. al. [4]:

+ Allows deployment of arbitrary policies, including stochastic or even

non-Markovian policies.
+ Improved deployment efficiency O(H).
* More complicated implementation.

4 Initial Insights and Challenges

Insights for practical setting:
* Hyperparameters are not in line with theoretical guarantees.

* Encouraging exploration heuristic: set probability to start exploring
the next layer.

» Fewer deployments than theoretically needed for guarantees.

+ Since dynamics models in our environments are stationary, we can
make some simplifications in the algorithm.

» Success in a simple 10x10 FrozenLake environment after reward
function refinement and hyperparameter tuning.
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Challenges

+ Sparse rewards: Agent struggles to find good " QF;,;‘ o
policies in a sparse reward environment (e.g. 1 for @ 5 50 =
reaching goal, 0 otherwise). 7] (Z] %]
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» Environment exploration: Agent struggles to c @

explore due to only deterministic policies. @
cee @@
+ Sensitivity to hyperparameters: highly sensitive to @ @

certain hyperparameters in practice, require fine
tuning.

5 Future Investigation

* Further refinement and evaluation of the deterministic agent on the
FrozenLake environment.

* Investigate the possible impact of hyperparameter tuning.

» Compare the performance of our implementation to the theoretical
limit.

* Benchmark the performance against standard algorithms such as
Q-learning etc.

» Set up additional test environments like GridWorld.

* Implement a stochastic DE-RL Agent using the
Deployment-Efficient RL with Covariance Matrix Estimation
algorithm (Algorithm 2).
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