
Partner/Sponsor:

Deployment-Efficient RL: A Practical Implementation
Thomas Creavin, Adam Klebus, Ke Li, Jiawei Huang (Supervisor)
Foundations of Reinforcement Learning, ETH Zurich

• Deploying a new policy can be costly and time-consuming. 
• Frequent deployment is not suitable for robotics [1], healthcare [2], 

and recommender systems [3] applications due to risks and costs.

• New algorithms with theoretical guarantees have been proposed [4] 
to achieve good policies in a few deployments.

An algorithm has deployment complexity K if, for an arbitrary MDP, the 
algorithm can:

• Return optimal policy with probability after K policy deployments;

• Collect trajectories in each deployment with a constraint that is 
polynomial in standard parameters.

For this setting, we’re concerned with a time-dependent episodic 
linear MDP. Deployment complexity here depends on the dimension d 
of the feature mapping ϕ and time horizon H.

Our primary goal is to implement an RL agent that can learn a good 
policy while only using approx. 10 policy deployments based on the 
algorithms in Huang et. al. [4].

• Further refinement and evaluation of the deterministic agent on the 
FrozenLake environment. 

• Investigate the possible impact of hyperparameter tuning.

• Compare the performance of our implementation to the theoretical 
limit.

• Benchmark the performance against standard algorithms such as 
Q-learning etc.

• Set up additional test environments like GridWorld.

• Implement a stochastic DE-RL Agent using the 
Deployment-Efficient RL with Covariance Matrix Estimation 
algorithm (Algorithm 2).

Algorithm 1 from Huang et. al. [4]:

• Deterministic policy setting.

• Layer-by-layer exploration strategy.

• Theoretically optimal for setting: O(dH) deployments.

Our implementation:

• Environment: FrozenLake, OpenAI Gymnasium library.

• First-ever implementation of this algorithm, including end-to-end 
training and deployment of the learned policy. 

• Can learn an optimal policy in as few as 10 deployments. 

Algorithm 2 from Huang et. al. [4]:

• Allows deployment of arbitrary policies, including stochastic or even 
non-Markovian policies.

• Improved deployment efficiency O(H).

• More complicated implementation.

Insights for practical setting:

• Hyperparameters are not in line with theoretical guarantees.

• Encouraging exploration heuristic: set probability to start exploring 
the next layer.

• Fewer deployments than theoretically needed for guarantees.

• Since dynamics models in our environments are stationary, we can 
make some simplifications in the algorithm.

• Success in a simple 10x10 FrozenLake environment after reward 
function refinement and hyperparameter tuning.

2 Problem Statement

5 Future Investigation

4 Initial Insights and Challenges

3 Algorithm and Methods

References

[1] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for robotic 
manipulation with asynchronous off-policy updates, 2016.
[2] Mehdi Fatemi, Taylor W Killian, Jayakumar Subramanian, and Marzyeh Ghassemi. Medical dead-ends and 
learning to identify high-risk states and treatments. Advances in Neural Information Processing Systems, 
34:4856–4870, 2021.
[3] Yuanguo Lin, Yong Liu, Fan Lin, Lixin Zou, Pengcheng Wu, Wenhua Zeng, Huanhuan Chen, and Chunyan 
Miao. A survey on reinforcement learning for recommender systems, 2022.
[4] Jiawei Huang, Jinglin Chen, Li Zhao, Tao Qin, Nan Jiang, and Tie-Yan Liu. Towards deployment-efficient 
reinforcement learning: Lower bound and optimality. arXiv preprint arXiv:2202.06450, 2022.

1 Background and Motivation

Challenges

• Sparse rewards: Agent struggles to find good 
policies in a sparse reward environment (e.g. 1 for 
reaching goal, 0 otherwise).

• Environment exploration: Agent struggles to 
explore due to only deterministic policies. 

• Sensitivity to hyperparameters: highly sensitive to 
certain hyperparameters in practice, require fine 
tuning.

Project Number: 6


